

Exercise-1

Marked questions are recommended for Revision.

चिन्हित प्रश्न दोहराने योग्य प्रश्न है।

PART - I : SUBJECTIVE QUESTIONS**भाग - I : विषयात्मक प्रश्न (SUBJECTIVE QUESTIONS)****Section (A) : Adsorption****खण्ड (A) : अधिशोषण**

A-1. Why adsorption is always exothermic ?
अधिशोषण हमेशा ऊष्माक्षेपी क्यों होता है ?

Ans. Adsorption is accompanied by decrease of randomness, i.e. this factor opposes the process, i.e. ΔS is $-ve$. For the process to be spontaneous, ΔG must be $-ve$. Hence, according to eqn, $\Delta G = \Delta H - T\Delta S$, ΔG can be $-ve$ only if ΔH is $-ve$.
अधिशोषण में यादृच्छिकता कम होती है अर्थात् यह कारक प्रक्रम का विरोध करता है (ΔS ऋणात्मक होता है)। प्रक्रम के स्वतः होने के लिए ΔG ऋणात्मक होना चाहिए, समीकरण के अनुसार $\Delta G = \Delta H - T\Delta S$, ΔG ऋणात्मक तभी होगा जब ΔH ऋणात्मक होगा।

A-2. What is the difference between physical adsorption and chemisorption ?
भौतिक व रासायनिक अधिशोषण में अन्तर बताइये ?

Ans. Difference between physical adsorption and chemical adsorption :

Physical Adsorption	Chemical Adsorption
The forces between the adsorbate molecules and the adsorbent are weak van der Waal's forces.	The forces between the adsorbate molecules and the adsorbent are strong chemical forces.
Low heat of adsorption of the order of $20-40 \text{ kJ mol}^{-1}$	High heat of adsorption of the order $80-240 \text{ kJ mol}^{-1}$
Usually occurs at low temperature and decreases with increasing temperature.	It occurs at high temperature decreases with increasing temperature.
It is reversible.	It is irreversible.
The extent of adsorption depends upon the ease of liquefaction of the gas.	There is no correlation between extent of adsorption and the ease of liquefaction of gas.
It is less specific in nature, all gases are adsorbed on the surface of a solid to some extent adsorbent and adsorbate molecules.	It is highly specific in nature and occurs only when there is bond formation between extents.
It forms multimolecular layers.	It forms mono-molecular layer.

हल. भौतिक अधिशोषण तथा रासायनिक अधिशोषण के मध्य अन्तर

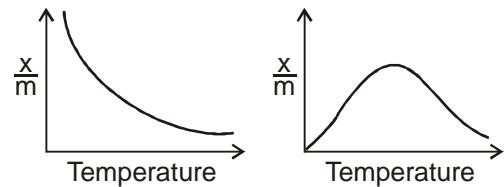
भौतिक अधिशोषण	रासायनिक अधिशोषण
अधिशोष्य अणुओं एवं अधिशोषक के मध्य बल दुर्बल वॉन्डरवाल आकर्षण बल है।	अधिशोष्य अणुओं तथा अधिशोषक के मध्य बल प्रबल रासायनिक बल (बन्ध) हैं।
अधिशोषण की ऊष्मा $20-40 \text{ kJ mol}^{-1}$ (न्यून) कोटि की होती है।	अधिशोषण की ऊष्मा $80-240 \text{ kJ mol}^{-1}$ (उच्च) कोटि की होती है।
सामान्यतः न्यून ताप पर होता है तथा ताप वृद्धि के साथ घट जाता है।	यह उच्च ताप पर होता है।
यह उत्क्रमणीय है।	यह अनुत्क्रमणीय है।
अधिशोषण की मात्रा गैस के द्रवीकरण की सुगमता पर निर्भर करती है।	अधिशोषण की मात्रा तथा गैस के द्रवीकरण की सुगमता में कोई सम्बन्ध नहीं है।
यह प्रकृति में कम विशिष्ट है, एक ठोस की सतह पर सभी गैसें एक सीमा तक अधिशोषित होती हैं।	यह प्रकृति में बहुत विशिष्ट है तथा केवल तब होता है, जब अधिशोषक एवं अधिशोष्य अणुओं के मध्य बन्धनिर्माण होता है।
यह बहुआण्विक परत का निर्माण करता है।	यह एकल आण्विक परत का निर्माण करता है।

A-3. What are the factors which influence the adsorption of a gas on a solid ?
ठोस पर गैस के अधिशोषण को प्रभावित करने वाले कारक क्या हैं ?

Sol. **(i) The nature of the gas (i.e. nature of the adsorbate).** The easily liquefiable gases such as HCl, NH₃, Cl₂ etc. are adsorbed more than the permanent gases such as H₂, N₂ and O₂. The ease with which a gas can be liquefied is primarily determined by its critical temperature. Higher the critical temperature (T_c) of a gas, the more easily it will be liquefied and, therefore, more readily it will be adsorbed on the solid.

Gas	SO ₂	CH ₄	H ₂
T _c	330K	190 K	33 K

(ii) Nature of adsorbent. The extent of adsorption of a gas depends upon the nature of adsorbent. Activated charcoal (i.e. activated carbon), metal oxides (silica gel and aluminium oxide) and clay can adsorb gases which are easily liquified. Gases such as H₂, N₂ and O₂ are generally adsorbed on finely divided transition metals Ni and Co.


(iii) Activation of adsorbent.

(a) Metallic adsorbents are activated by mechanical rubbing or by subjecting it to some chemical reactions.

(b) To increase the adsorbing power of adsorbents, they are sub-divided into smaller pieces. As a result, the surface area is increased and therefore, the adsorbing power increases.

(iv) Effect of temperature.

Mostly the process of adsorption is exothermic and the reverse process or desorption is endothermic. If the above equilibrium is subjected to increase in temperature, then according to Le-Chaterlier's principle, with increase in temperature, the desorption will be favoured. Physical adsorption decreases continuously with increase in temperature whereas chemisorption increases initially, shows a maximum in the curve and then it decreases continuously.

The initial increase in chemisorption with increase in temperature is because of activation energy required.

This is why the chemical adsorption is also known as "**Activated adsorption**".

A graph between degree of adsorption (x/m) and temperature 't' at a constant pressure of adsorbate gas is known as **adsorption isobar**.

(v) Effect of pressure. The extent of adsorption of a gas per unit mass of adsorbent depends upon the pressure of the gas. The variation of extent of adsorption expressed as x/m (where x is the mole of adsorbate and m is the mass of the adsorbent) and the pressure is given as below. A graph between the amount of adsorption and gas pressure keeping the temperature constant is called an adsorption isotherm.

It is clear from the figure that extent of adsorption (x/m) increases with pressure and becomes maximum corresponding to pressure P_s called equilibrium pressure. Since adsorption is a reversible process, the desorption also takes place simultaneously. At this pressure (P_s) the amount of gas adsorbed becomes equal to the amount of gas desorbed.

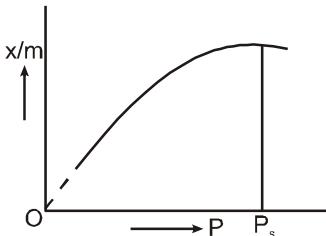


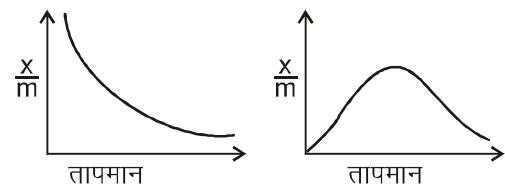
Figure-1

हल. **(i) गैस की प्रकृति (अर्थात् अधिशोष्य की प्रकृति) :** HCl, NH₃, Cl₂ इत्यादि आसानी से द्रवित होने वाली गैसे H₂, N₂ और O₂ जैसी स्थायी गैसों से अधिक अधिशोषित होती है। एक गैस सरलता से द्रवित होती है इसका निर्धारण क्रान्तिक ताप से होता है। एक गैस का क्रान्तिक ताप जितना अधिक होगा तो गैस आसानी से द्रवित होगी और ठोस की सतह पर तेजी से इसका अधिशोषण होगा।

गैस :	SO ₂	CH ₄	H ₂
क्रान्तिक ताप :	330 K	190 K	33 K

(ii) अधिशोषक की प्रकृति : एक गैस के अधिशोषण की मात्रा अधिशोषक की प्रकृति पर निर्भर करती है। सक्रिय चारकोल (सक्रिय कार्बन), धातु ऑक्साइड (सिलिका जेल और एल्युमिनियम ऑक्साइड) और मृदा गैसों को सरलता से अधिशोषित

कर सकती है, जो कि आसानी से द्रवीकृत होती है। H_2 , N_2 तथा O_2 जैसे गैसें महीन चूर्णित संक्रमण धातुओं जैसे Ni तथा Co पर सामान्यतः अधिशोषित होती है।


(iii) अधिशोषक की सक्रियता :-

(a) धात्विक अधिशोषक को यांत्रिक घर्षण या कुछ रासायनिक अभिक्रिया द्वारा सक्रिय किया जाता है।

(b) अधिशोषक की अधिशोष्य सामर्थ्य बढ़ाने के लिए इनको बहुत छोटे टुकड़ों में बाँटा जाता है। परिणामस्वरूप पृष्ठ क्षेत्रफल बढ़ता है तथा इससे अधिशोषी सामर्थ्य भी बढ़ती है।

(iv) ताप का प्रभाव :

अधिशोषण का प्रक्रम ऊष्माक्षेपी होता है। इसलिए विपरीत प्रक्रम या विशोषण ऊष्माशोषी होता है। यदि उपरोक्त साम्य पर ताप में वृद्धि की जाती है तो ली-शातेलिए सिद्धान्त के अनुसार ताप में वृद्धि के साथ विशोषण होता है। तापमान में वृद्धि के साथ भौतिक अधिशोषण में लगातार कमी आती है जब कि रासायनिक अधिशोषण प्रारम्भ में बढ़ता है, जो उच्चिष्ठ को प्राप्त करता है तथा इसके पश्चात् यह लगातार कम होता जाता है।

तापमान में वृद्धि के साथ रासायनिक अधिशोषण प्रारम्भ में बढ़ता है, इसका कारण आवश्यक सक्रियण ऊर्जा है, यही कारण है कि रासायनिक अधिशोषण को “सक्रियण अधिशोषण” भी कहा जाता है।

अधिशोषण गैस के एक नियत दाब पर अधिशोषण की मात्रा (x/m) तथा तापमान t के बीच खींचा गया आरेख अधिशोषी अधिशोषण कहलाता है।

(v) दाब का प्रभाव : अधिशोषक के प्रति इकाई द्रव्यमान द्वारा गैस के अधिशोषण की मात्रा गैस के दाब पर निर्भर करता है। दाब तथा अधिशोषण की मात्रा में परिवर्तन (x/m में व्यक्त किया जाता है, जहाँ x अधिशोष्य का द्रव्यमान तथा m अधिशोषक का द्रव्यमान है) को ग्राफ द्वारा दर्शाया गया है। गैस दाब तथा अधिशोषण की मात्रा के बीच आरेख नियत ताप पर एक अधिशोषण समतापी आरेख कहलाता है।

चित्र-(1) से स्पष्ट है कि दाब के साथ अधिशोषण की मात्रा (x/m) बढ़ती है तथा दाब P_s के संगत अधिकतम हो जाता है जो साम्य दाब कहलाता है। चूंकि अधिशोषण एक उत्क्रमणीय प्रक्रम है अतः साथ-साथ विशोषण भी होता है। इस दाब (P_s) पर अधिशोषित गैस की मात्रा, विशोषित गैस की मात्रा के बराबर हो जाती है।

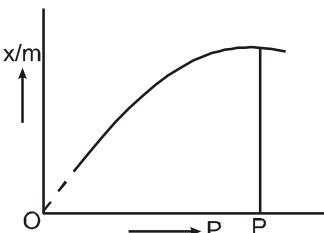


Figure-1

A-4. What is an adsorption isotherm ?

समतापी अधिशोषण क्या है ?

Ans. It represents the variation of the mass of the gas adsorbed per gram of the adsorbent with pressure at constant temperature.

Ans. यह एक निश्चित ताप पर, प्रति ग्राम अधिशोषक पदार्थ द्वारा अधिशोषित गैस की मात्रा एवं दाब के साथ सम्बन्ध को बताता है।

A-5. What do you understand by activation of adsorbent ? How is it achieved ?

अधिशोषक के सक्रियण से आप क्या समझते हैं ? इसे कैसे प्राप्त कर सकते हैं ?

Ans. It means increasing the adsorption power of an adsorbent and is done by increasing the surface area of the adsorbent by a suitable method.

Ans. इसका मतलब अधिशोषक की अधिशोषण क्षमता को बढ़ाना है और इसे किसी उपयुक्त विधि द्वारा अधिशोषक के सतह क्षेत्रफल को बढ़ा कर प्राप्त कर सकते हैं।

A-6. Which will be adsorbed more readily on the surface of charcoal and why— NH_3 or CO_2 ?

NH_3 अथवा CO_2 में कौन आसानी से चारकोल की सतह पर अधिशोषित होता है व क्यों ?

Ans. NH_3 has higher critical temperature than that of CO_2 , i.e. NH_3 is more easily liquefiable than CO_2 because, NH_3 has greater intermolecular forces of attraction and hence will be adsorbed more readily.

Ans. CO_2 से NH_3 का क्रान्तिक ताप अधिक होता है अर्थात् NH_3 , CO_2 की अपेक्षा आसानी से द्रवित हो जाती है। NH_3 में अन्तरा आण्विक आकर्षण बल अधिक होता है जिससे NH_3 आसानी से अधिशोषित हो जाती है।

A-7. In an Adsorption experiment a graph between $\log x/m$ versus $\log P$ was found to be linear with a slope of 45° the intercept of the $\log x/m$ was found to be 0.3010. Calculate the amount of gas adsorbed per gram of charcoal under a pressure of 0.6 bar.

एक अधिशोषण प्रयोग में $\log x/m$ तथा $\log P$ के बीच खींचा गया आरेख रेखीय पाया गया, जिसकी ढाल 45° है व $\log x/m$ का अन्तःखण्ड 0.3010 है। 0.6 bar के दाब पर चारकोल के प्रति ग्राम द्वारा अधिशोषित गैस की मात्रा परिकलित कीजिए।

Ans. 1.2

Sol. According to frendulish equation $\frac{x}{m} = K \times P^{1/n}$

$$\log \frac{x}{m} = \frac{1}{n} \log P + \log K$$

Compare with straight line equation

$$\frac{1}{n} = \tan 45^\circ ; n = 1$$

$$\text{Intercept} \quad \log K = 0.3010$$

$$K = 2$$

$$\text{Put the value of } K, P \text{ & } n \text{ in freundlich equation } \frac{x}{m} = K \times P^{1/n} = 2 \times (0.6)^1 = 1.2.$$

हल. फ्रेंडलिच समीकरण के अनुसार $\frac{x}{m} = K \times P^{1/n}$

$$\log \frac{x}{m} = \frac{1}{n} \log P + \log K$$

सरल रेखा समीकरण के आधार पर

$$\frac{1}{n} = \tan 45^\circ ; n = 1$$

$$\text{अन्तःखण्ड} \quad \log K = 0.3010$$

$$K = 2$$

$$\text{फ्रेंडलिच समीकरण में } K, P \text{ व } n \text{ के मान रखने पर } \frac{x}{m} = K \times P^{1/n} = 2 \times (0.6)^1 = 1.2.$$

A-8. 1 gm of charcoal adsorbs 100 mL of 0.5 M CH_3COOH to form mono layer and there by the molarity of CH_3COOH reduces to 0.49 M. Calculate the surface area of the charcoal adsorbed by each molecule of CH_3COOH . Surface area of charcoal = $3.01 \times 10^2 \text{ m}^2/\text{g}$.

1 ग्राम चारकोलएकल परत बनाने के लिए 0.5 M CH_3COOH का 100 ml अधिशोषित करता है तथा इसलिए CH_3COOH की मोलरता कम होकर 0.49 M रह जाती है। CH_3COOH के प्रत्येक अणु द्वारा अधिशोषित चारकोल का पृष्ठीय क्षेत्रफल परिकलित कीजिए। चारकोल का पृष्ठीय क्षेत्रफल = $3.01 \times 10^2 \text{ m}^2/\text{g}$.

Ans. $5 \times 10^{-19} \text{ m}^2$

Sol. 100 ml of 0.5 CH_3COOH contains = 0.05 mole

After adsorption, CH_3COOH present = 0.049 mole

Acetic acid adsorbed by 1 gm charcoal = $0.05 - 0.049 = 0.001$ mole = 6.023×10^{20} molecule

Surface area of 1 gm charcoal = 3.01×10^2

Surface area of charcoal adsorbed by each molecule = $3.01 \times 10^2 / 6.023 \times 10^{20} = 5 \times 10^{-19} \text{ m}^2$.

हल. 100 ml, 0.5 CH_3COOH में उपस्थित है = 0.05 मोल

अधिशोषण के पश्चात् CH_3COOH उपस्थित मोल = 0.049 मोल

1 ग्राम चारकोल द्वारा अधिशोषित एसिटिक अम्ल = $0.05 - 0.049 = 0.001$ मोल = 6.023×10^{20} अणु

1 ग्राम चारकोल का सतही क्षेत्रफल = 3.01×10^2

प्रत्येक अणु द्वारा अधिशोषित चारकोल का सतही क्षेत्रफल = $3.01 \times 10^2 / 6.023 \times 10^{20} = 5 \times 10^{-19} \text{ m}^2$.

A-9. What role does adsorption play in heterogeneous catalysis ?

विषमांगी उत्प्रेरण में अधिशोषण का क्या महत्व है ?

Ans. In heterogeneous catalysis, generally the reactants are gaseous whereas catalyst is a solid. The reactant molecules are adsorbed on the surface of the catalyst. As a result, the concentration of the reactant molecules on the surface increases and hence the rate of reaction increases.

सामान्यता विषमांगी उत्प्रेरण में क्रियाकारक गैस व उत्प्रेरक ठोस होते हैं। क्रियाकारक अणु उत्प्रेरक की सतह पर अधिशोषित हो जाते हैं। परिणामस्वरूप, सतह पर क्रियाकारक अणु की सान्द्रता बढ़ जाती है इसलिए अभिक्रिया की दर बढ़ती है।

A-10. How many grams of gas would be adsorbed per gram of a substance at 8 atm by assuming Freundlich adsorption isotherm.

$$\frac{x}{m} = kp^{1/n} \quad \text{and} \quad k = 10^{-2} \text{ atm}^{-1/3} \quad \& \quad n = 3.$$

8 atm पर कितने ग्राम गैस अधिशोषित होगी फ्रेण्डलिच (Freundlich) समतापी अधिशोषण मानकर।

$$\frac{x}{m} = kp^{1/n} \quad \text{तथा} \quad k = 10^{-2} \text{ atm}^{-1/3} \quad \text{तथा} \quad n = 3.$$

Ans. 0.02 g

$$\frac{x}{m} = 10^{-2} \times 8^{1/3} = 0.02 \text{ g}$$

A-11. 10 mg of an adsorbate gets adsorbed on a surface. This causes the release of 3J of heat at constant pressure and at 27°C. [Molar mass of adsorbate = 100 g/mol].

(i) Find $\Delta H_{\text{adsorption}}$.

(ii) Argue whether the adsorption is physical or chemical ?

(iii) If 20 mg of adsorbate is adsorbed at temperature T_0 . Then compare T_0 and 27°C :

10 mg अधिशोष्य एक पृष्ठ पर अधिशोषित होता है। इस कारण 27°C तथा नियत दाब पर 3 J ऊर्जा मुक्त होती है। [अधिशोष्य का मोलर द्रव्यमान = 100 g/mol]

(i) $\Delta H_{\text{अधिशोषण ज्ञात कीजिए}}$ ।

(ii) चर्चा कीजिए कि अधिशोषण किस प्रकार का है : भौतिक तथा रासायनिक ?

(iii) यदि दिये गये T_0 ताप पर 20 mg अधिशोष्य अधिशोषित होता है। तब T_0 तथा 27°C की तुलना कीजिए :

Ans. $T_0 < 27^\circ\text{C}$

$$\text{Sol. mol} = \frac{10}{100} \times 10^{-3} = 10^{-4}; \Delta H_{\text{Ads}} = \frac{3}{10^{-4}} = 30 \text{ kJ.}$$

From ΔH , Adsorption is physical. Hence, the amount of substance adsorb will decrease with temperature. Therefore, $T_0 < 27^\circ\text{C}$.

$$\text{हल. मोल} = \frac{10}{100} \times 10^{-3} = 10^{-4}; \Delta H_{\text{Ads}} = \frac{3}{10^{-4}} = 30 \text{ kJ.}$$

ΔH से, अधिशोषण भौतिक अधिशोषण है। अर्थात् पदार्थ की अधिशोषित मात्रा ताप के साथ घटेगी। इसलिए, $T_0 < 27^\circ\text{C}$.

Section (B) : Catalysis

खण्ड (B) : उत्प्रेरण

B-1. Give two examples of heterogeneous catalysis.

विषमांगी उत्प्रेरण के दो उदाहरण दीजिए।

Ans. (i) Mfg. of NH_3 (Haber's process) – using iron as catalyst

(ii) Mfg. of H_2SO_4 – using platinised asbestos or V_2O_5 as catalyst.

(i) NH_3 का निर्माण (हेबर प्रक्रम) – आयरन को उत्प्रेरक के रूप में प्रयुक्त कर

(ii) H_2SO_4 का निर्माण – प्लेटीनीकृत एस्बेर्टोस अथवा V_2O_5 को उत्प्रेरक के रूप में प्रयुक्त कर

B-2. Identify the correct order of steps in heterogeneous catalysis.

(i) Adsorption of reactant molecules on the surface of the catalyst.

(ii) Diffusion of reactant to the surface of the catalyst.

(iii) Formation of reaction product on the catalyst surface.

(iv) Diffusion of reaction product from the catalyst surface or desorption.

(v) Formation of activated intermediate.

Multimolecular colloids—formed by the aggregation of a large number of simple molecules.
Macromolecular colloids – due to large size of the molecules themselves.

Ans. संगुणित कोलॉइड, विद्युत अपघट्य से बनते हैं जिससे कि वे आयनों में टूट जाते हैं और ये आयन आपस मिलकर आयनिक मिसेल बनाते हैं जिसका आकार कोलॉइडी परास के अन्तर्गत होता है जैसे साबुन।
बहुआण्विक कोलॉइड का निर्माण बहुत सारे साधारण अणुओं के समूहन से होता है।
वृहदआण्विक कोलॉइड – ये अणु के अपने आप में बड़े आकार के कारण बनते हैं।

C-4. Give one example of multimolecular and macromolecular colloids.
बहुआण्विक कोलॉइड व वृहद आण्विक कोलॉइड के एक-एक उदाहरण दीजिए।

Ans. Multimolecular – S_8
Macromolecular – starch

Ans. बहुआण्विक – S_8
वृहद आण्विक – स्टार्च

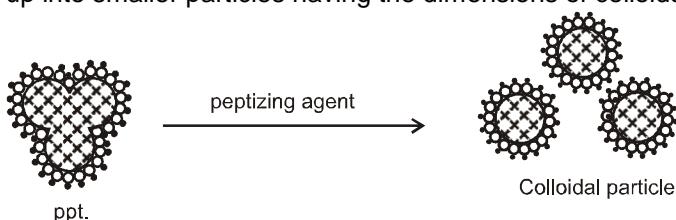
C-5. Describe a method each for the preparation of sols of sulphur and platinum in water
सल्फर एवं प्लेटिनम का जल में सॉल बनाने की एक विधि बताइये।

Ans. Sol of sulphur – oxidation method or by exchange of solvent.
Sol of platinum – Bredig's electro-disintegration method.

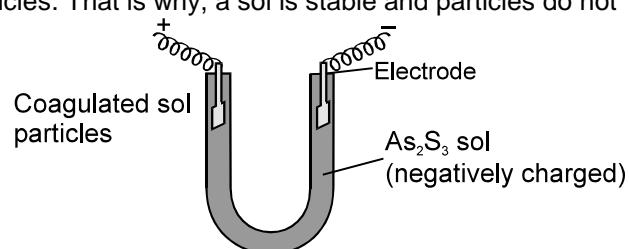
Ans. सल्फर का सॉल—ऑक्सीकरण विधि द्वारा या विलायक विनिमय विधि द्वारा
प्लेटीनम का सॉल – ब्रेडिंग के विद्युत विघटन विधि द्वारा

Section (D) : Purification and Properties of Colloid

खण्ड (D) : कोलॉइड का शुद्धिकरण एवं उनको बनाने की विधि


D-1. Explain the following terms :

(a) Peptization	(b) Electrophoresis
(c) Dialysis	(d) Brownian movement


निम्नलिखित को समझाइए

(a) पेटीकरण	(b) वैद्युत कण संचलन
(c) अपोहन	(d) ब्राउनियन गति

Ans. **(a) Peptization:** The term has originated from the digestion of proteins by the enzyme pepsin. Peptization may be defined as (the process of converting a precipitate into colloidal sol by shaking it with dispersion medium in the presence of a small amount of electrolyte). The electrolyte used for this purpose is called peptizing agent. This method is applied, generally, to convert a freshly prepared precipitate into a colloidal sol. During peptization, the precipitate adsorbs one of the ions of the electrolyte on its surface. The ion adsorbed on the surface is common either with the anion or cation of the electrolyte. This causes the development of positive or negative charge on precipitates which ultimately break up into smaller particles having the dimensions of colloids.

(b) Electrical Properties (Electrophoresis) : The particles of the colloids are electrically charged and carry positive or negative charge. The dispersion medium has an equal and opposite charge making the system neutral as a whole. Due to similar nature of the charge carried by the particles, they repel each other and do not combine to form bigger particles. That is why, a sol is stable and particles do not settle down. Arsenious sulphide, gold, silver and platinum particles in their respective colloidal sols are negatively charged while particles of ferric hydroxide, aluminium hydroxide are positively charged. The existence of the electric charge is shown by the phenomenon of electrophoresis. It involves the 'movement of colloidal particles

either towards the cathode or anode, under the influence of the electric field'. The apparatus used for electrophoresis as shown in fig.

The colloidal solution is placed in a U-tube fitted with platinum electrodes. On passing an electric current, the charged colloidal particles move towards the oppositely charged electrode. Thus, if arsenic sulphide sol is taken in the U-tube, in which negatively charged particle of arsenic sulphide move towards the anode.

*Earlier this process was called cataphoresis because most of the colloidal sols studied at that time were positively charged and moved towards cathode.

(c) Dialysis : It is a process of removing a dissolved substance from a colloidal solution by means diffusion through suitable membrane. Since particles in true solution (ions or smaller molecules) can pass through animal membrane or parchment paper or cellophane sheet but colloidal particle do not, the apparatus used for this purpose is called Dialyser.

A bag of suitable membrane containing the colloidal solutions is suspended in a vessel through which fresh water continuously flow. The molecules and ions (crystalloids) diffuse through membrane into the outer water & pure colloidal solution is left behind.

(d) Mechanical Properties :

Brownian movement: Robert Brown, a botanist, discovered in 1827 that pollen grains placed in water do not remain at rest but move about continuously and randomly. Later on, this phenomenon was observed in case of colloidal particles when they were seen under an ultramicroscope. The particles were seen to be in constant zig-zag motion as shown in fig. This zig-zag motion is called Brownian movement

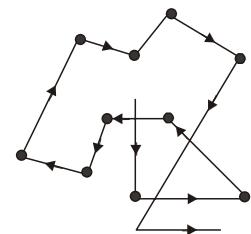
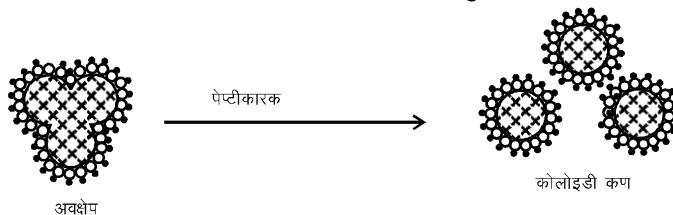
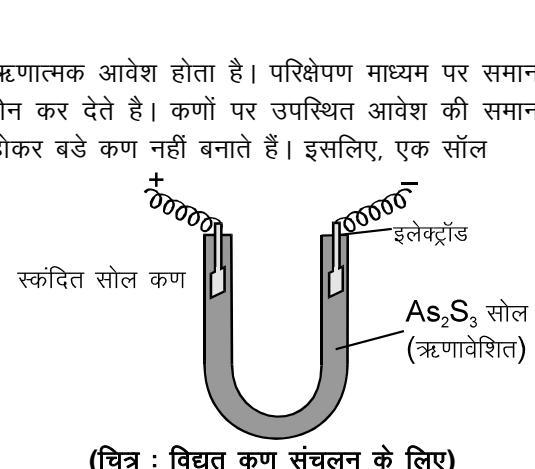



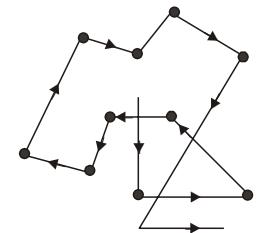
Figure
Brownian movement


हल.

(a) पेटीकरण : यह शब्द प्रोटीन के पाचन के लिए आवश्यक एन्जाइम पेप्सिन से लिया गया है। पेटीकरण इस प्रकार परिभाषित किया जा सकता है विद्युतअपघट्य की अल्प मात्रा की उपस्थिति में अवक्षेप को कोलॉइडी सॉल में परिवर्तित करना पेटीकरण कहलाता है। इस कार्य के लिए उपयोग में आने वाला विद्युत-अपघट्य पेटीकारक कहलाता है। यह विधि सामान्यतः एक ताजे बने अवक्षेप को कोलॉइडी सॉल में बदलने के लिए काम में ली जाती है। पेटीकरण के दौरान अवक्षेप अपनी सतह पर वैद्युत अपघट्य के एक समआयन को अधिशोषित करता है। सतह पर अधिशोषित आयन, वैद्युत अपघट्य के ऋणायन के या धनायन के उभयनिष्ट ही होता है। इसके कारण अवक्षेप पर धनात्मक या ऋणात्मक आवेश उत्पन्न होता है जो कोलॉइडी विमायुक्त छोटे कणों में अन्ततः टूट जाता है।

(b) विद्युत गुण : (विद्युतकण संचलन)

कोलॉइडी कण विद्युत आवेशित होते हैं तथा इन पर धनात्मक या ऋणात्मक आवेश होता है। परिक्षेपण माध्यम पर समान एवं विपरीत आवेश होने के कारण पूर्ण रूप से निकाय को उदासीन कर देते हैं। कणों पर उपस्थित आवेश की समान प्रवृत्ति के कारण वे एक-दूसरे को प्रतिकर्षित करते हैं तथा संयुक्त होकर बड़े कण नहीं बनाते हैं। इसलिए, एक सॉल स्थायी होता है तथा कण नीचे नहीं बैठते हैं। आर्सेनियस सल्फाइड, सोना, चांदी व प्लेटिनम कण उनके कोलॉइडी सॉल में ऋणावेशित होते हैं, जबकि फेरिक हाइड्रॉक्साइड, एल्युमिनियम हाइड्रॉक्साइड के कण धनावेशित होते हैं। विद्युत आवेश की उपस्थिति को विद्युत कण संचलन की परिधटना से प्रदर्शित किया जाता है। इस प्रभाव में वैद्युत क्षेत्र की उपस्थिति में कोलॉइडी कणों का कैथोड या एनोड की ओर अभिगमन होता है। विद्युत कण संचलन में प्रयुक्त उपकरण चित्र में प्रदर्शित है –


(चित्र : विद्युत कण संचलन के लिए)

प्लेटिनम इलेक्ट्रॉड युक्त U-आकार की नली में कोलॉइडी विलयन को रखा जाता है। विद्युत धारा प्रवाहित करने पर आवेशित कोलॉइडी कण विपरीत आवेशित इलेक्ट्रॉड की ओर गति करते हैं। अतः यदि आर्सेनियस सल्फाइड सॉल को U-आकार की नली में लिया जाता है, तो इसके कण एनोड की ओर गति करते हैं।

*पूर्व में इसे धनकण संचलन (cataphoresis) कहा जाता था क्योंकि उस समय अध्ययन किए गये अधिकतर कोलॉइडी सॉल धनावेशित होते थे तथा केथोड की ओर जाते थे।

(c) अपोहन : यह उचित झिल्ली में से विसरण द्वारा कोलॉइडी विलयन से घुले हुए पदार्थ को हटाने का प्रक्रम है। चूंकि वास्तविक विलयन (आयन अथवा छोटा कण) में कण जन्तु झिल्ली अथवा पार्चमेन्ट पेपर अथवा सेलोफेन शीट में से विसरित हो सकते हैं लेकिन कोलॉइडी कण नहीं, इस उद्देश्य के लिए प्रयुक्त किया गया उपकरण अपोहक कहलाता है। उपयुक्त झिल्ली का एक बेग, जो कोलॉइडी विलयन युक्त होता है, को एक निकाय में निलम्बित कर ताजा जल को लगातार प्रवाहित किया जाता है। अणुओं व आयनों (क्रिस्टलाभ) को झिल्ली में से बाह्य जल में विसरित किया जाता है तथा शुद्ध कोलॉइडी विलयन शेष रह जाता है।

(d) ब्राऊनियन गति : वनस्पतिज्ञ रॉबर्ट ब्राऊन ने 1827 में खोजा कि जल में डाले गए परागकण विराम अवस्था में नहीं रहते, परंतु अव्यवस्थित रूप से तथा लगातार गति करते रहते हैं। बाद में, कोलॉइडी कणों में यह परिघटना देखी गई जब उन्हें अतिसूक्ष्मदर्शी के अंतर्गत देखा गया। कणों को लगातार टेढ़ी-मेढ़ी (zig-zag) गति में देखा गया जैसा कि चित्र में दिखाया गया है। इस टेढ़ी-मेढ़ी (zig-zag) गति को ब्राऊनियन गति कहा जाता है।

(चित्र – ब्राऊनियन गति)

D-2. Why the sun looks red at the time of setting ?

सूर्यास्त के समय सूर्य लाल क्यों दिखाई देता है।

Ans. At the time of settings, the sun is at the horizon. The light emitted by the sun has to travel a longer distance through the atmosphere. As a result, blue part of the light is scattered away by the dust particles in the atmosphere. Hence, the red part is visible.

Ans. सूर्यास्त के समय, सूर्य क्षेत्रिज रेखा पर होता है जिससे सूर्य का प्रकाश वायुमण्डल में अधिक दूरी तय करता है। वायुमण्डल में उपस्थित धूल कणों द्वारा प्रकाश के नीले हिस्से का प्रकीर्णन हो जाता है जिससे लाल हिस्सा ही दिखाई देता है।

D-3. Why is osmotic pressure of a colloidal solution less than that of true solution ?

कोलॉइडी विलयन का परासरी दाब वास्तविक विलयन से कम क्यों होता है ?

Sol. Because colloidal solutions being bigger aggregate of a large number of molecule, the effective number of particles in colloidal solution is relative much smaller.

Ans. क्योंकि कोलॉइडी विलयन, बहुत सारे अणुओं के परस्पर एकत्र होने से बनता है, जिससे कोलॉइडी विलयन में कणों की प्रभावी संख्या सापेक्षिक रूप से बहुत कम होती है।

Section (E) : Coagulation, Protection And application of colloid

खण्ड (E) : स्कंदन, रक्षण एवं कोलॉइड के अनुप्रयोग

E-1. Which one of the following electrolytes is most effective for the coagulation of Fe(OH)_3 sol and why ?
 NaCl , Na_2SO_4 , Na_3PO_4 .

NaCl , Na_2SO_4 , Na_3PO_4 में से कौनसा विद्युत अपघट्य, Fe(OH)_3 सॉल का स्कंदन अधिक प्रभावी रूप से करेगा व क्यों ?

Ans. According to Hardy-schulze rule, greater the charge on the oppositely charged ion of the electrolyte added, more effective it is in bringing about coagulation. Hence Na_3PO_4 (PO_4^{3-}) is most effective.

Ans. हार्डी-शुल्जे नियम के अनुसार, मिलाये गए विद्युत अपघट्य में विपरित आवेशित आयनों पर जितना अधिक आवेश होगा, स्कंदन उतना ही अधिक प्रभावी होगा, इसलिए Na_3PO_4 (PO_4^{3-}) अधिक प्रभावी होगा।

E-2. What do you understand by "isoelectric point" of a colloid ?
कोलॉइड के समविभव बिन्दु से आप क्या समझते हैं ?

Ans. **Isoelectric point :** The H^+ concentration at which the colloidal particles have no charge is known as the isoelectric point. At this point stability of colloidal particles becomes very less & do not move under influence of electric field.

हल. समविभव बिन्दु : H^+ सान्द्रता जिसमें कोलॉइडी कणों पर कोई आवेश नहीं है समविभव बिन्दु कहलाता है। इस बिन्दु पर कोलॉइडी कणों का स्थायित्व बहुत कम हो जाता हैं तथा वैद्युत क्षेत्र के प्रभाव में गति नहीं करता हैं।

E-3. Rivers form delta on meeting with ocean, why ?
नदी जब महासागर से मिलती हैं तो डेल्टा का निर्माण करती है, क्यों ?

Ans. **Formation of deltas** : The river water contains colloidal particles of sand and clay which carry negative charge. The sea water contains +ve ions such as Na^+ , Mg^{2+} , Ca^{2+} , etc. As the river water meets sea water, these ions discharge the sand or clay particle which are precipitated in the form of delta.

हल. डेल्टा का निर्माण : नदी के जल में मिट्टी व रेत के ऋणावेशित कोलॉइडी कण होते हैं जिन्हें नदियाँ साथ में ले जाती हैं। समुद्री जल में Na^+ , Mg^{2+} , Ca^{2+} , इत्यादि जैसे धनावेश होते हैं। जैसे ही नदी का जल, समुद्री जल से मिलता हैं तो ऋणावेशित कोलॉइडी कण निरावेशित हो डेल्टा के रूप में अवक्षेपित हो जाते हैं।

E-4. Artificial rain is made by spraying salt over clouds, why ?
बादल पर लवण को छिड़क कर कृत्रिम वर्षा की जाती है क्यों ?

Ans. **Artificial rain** : Cloud consists of charged particle of water dispersed in air. Rain is caused by aggregation of these minute particles. Artificial rain can be done by throwing electrified sand of Agl from aeroplanes, colloidal H_2O particle present in cloud will get coagulated by these sand or Agl particles to form bigger water drops causing rain.

हल. कृत्रिम वर्षा : बादल में, वायु में जल के आवेशित कण उपस्थित होते हैं। इन सूक्ष्म कणों के संगुणन के कारण बारिश होती है। कृत्रिम वर्षा के लिए जब हवाई जहाज से आवेशित रेत के कण या Agl की बरसात की जाती है तो बादल में उपस्थित जल के आवेशित कोलॉइडी कण स्कन्दित हो जल की बड़ी-बड़ी बूँदों के रूप में गिरने लगते हैं। इस कारण वर्षा होती है।

Section (F) : Emulsion and Gel

खण्ड (F) : पायस तथा जैल

F-1. Name two demulsifier.

दो विपायसीकारकों के नाम बताइए।

Ans. Alcohol, phenol. (एल्कोहॉल, फिनॉल)

F-2. What is the difference between sols and emulsions.

सॉल व पायस में क्या अन्तर हैं ?

Ans. (i) Sols are dispersions of solids in liquids while emulsions are dispersions of liquids in liquids.

(ii) Sols are quite stable whereas emulsions are less stable.

Ans. (i) सॉल ठोस का द्रव में परिष्केपण है जबकि पायस द्रव का द्रव में परिष्केपण है।

(ii) सॉल स्थायी है जबकि पायस कम स्थायी है।

F-3. What is demulsification ?

विपायसीकरण क्या है ?

Ans. The process of separation of the constituent liquids of an emulsion is called demulsification.

Ans. पायस में उपस्थित अवयवी द्रवों को पृथक करने के प्रक्रम को विपायसीकरण कहते हैं।

F-4. What is phase inversion in emulsion ?

पायस में प्रावस्था प्रतिलोमन क्या होता है ?

Ans. Changing of W/O emulsion to O/W emulsion and vice-versa is known as phase inversion.

Ans. पायस W/O का पायस O/W में परिवर्तन (इसका विपरीत भी) प्रावस्था प्रतिलोपन कहलाता है।

PART - II : ONLY ONE OPTION CORRECT TYPE

भाग - II : केवल एक सही विकल्प प्रकार (ONLY ONE OPTION CORRECT TYPE)

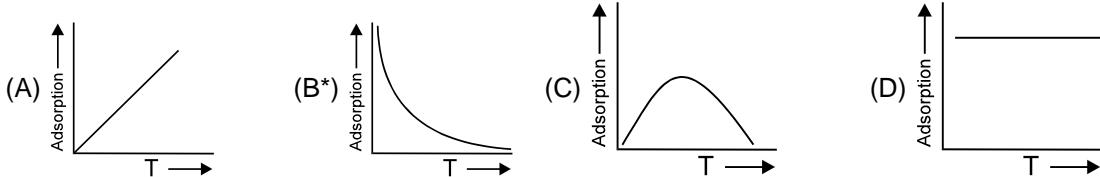
Section (A) : Adsorption

खण्ड (A) : अधिशोषण

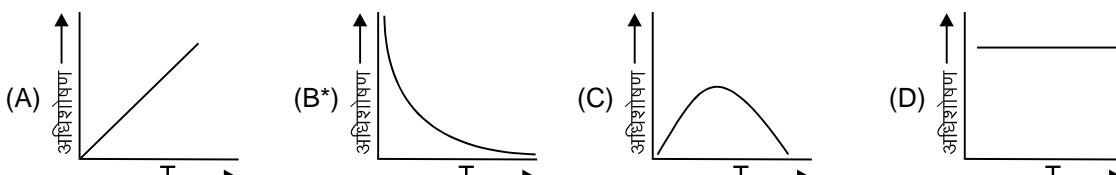
A-1. Which of the following statements about chemisorption is not applicable?

(A) It involves chemical forces between adsorbent and adsorbate

(B) It is irreversible in nature
 (C) It involves high heat of adsorption
 (D*) It does not require activation energy


रासायनिक अधिशोषण के संदर्भ में निम्न में से कौनसा कथन लागू नहीं होता है ?

(A) अधिशोषक तथा अधिशोष्य के बीच रासायनिक बल लगता है।
 (B) यह प्रकृति में अनुत्क्रमणीय होता है।
 (C) यह अधिशोषण की उच्च ऊर्जा रखता है।
 (D*) इसमें सक्रियण ऊर्जा की आवश्यकता नहीं होती है।


Sol. Activation energy is required for chemical adsorption.

हल. रासायनिक अधिशोषण के लिए सक्रियण ऊर्जा की आवश्यकता होती है।

A-2. Following is the variation of physical adsorption with temperature:

तापमान के साथ भौतिक अधिशोषण में परिवर्तन निम्न है :

Sol. As temperature increases, physical adsorption decreases because physical adsorption is exothermic and reversible process.

हल जैसे ही ताप बढ़ता है, भौतिक अधिशोषण घट जाता है, क्योंकि भौतिक अधिशोषण एक ऊष्माक्षेपी तथा उत्क्रमणीय प्रक्रिया होती है।

A-3. Adsorption is the phenomenon in which a substance:

(A*) accumulates on the surface of the other substance
 (B) goes into the body of the other substances
 (C) remains close to the other substance
 (D) none of these

अधिशोषण एक परिघटना है जिसमें एक पदार्थ

(A*) दूसरे पदार्थ की सतह पर इकट्ठा होता है। (B) दूसरे पदार्थ के स्थूल भाग में जाता है।
 (C) दूसरे पदार्थ के नजदीक रहता है। (D) उपरोक्त में से कोई नहीं

Sol. Accumulation of substance on the surface of the other substance is known as adsorption.

हल. किसी अन्य पदार्थ की सतह पर एक पदार्थ के एकत्रिकरण को अधिशोषण कहते हैं।

A-4. Finely divided catalyst has greater surface area and has greater catalytic activity than the compact solid. If a total surface area of 6291456 cm^2 is required for adsorption in a catalysed gaseous reaction, then how many splits should be made to a cube of exactly 1 cm in length to achieve required surface area. (Given : One split of a cube gives eight cubes of same size)

अच्छी तरह चूर्णित किए गए उत्प्रेरक का पृष्ठीय क्षेत्रफल अधिक होता है तथा उत्प्रेरकीय सक्रियता सघन ठोस की अपेक्षा अधिक होती है। एक उत्प्रेरकीय गैसीय अभिक्रिया में 6291456 cm^2 का कुल पृष्ठीय क्षेत्रफल प्राप्त करने के लिए 1 cm लम्बाई के घन को कितने घनों में तोड़ना पड़ेगा (यदि प्रत्येक घन के विभाजन से समान आकार के आठ घन बन जायें) ताकि आवश्यक पृष्ठीय क्षेत्रफल प्राप्त हो सके।

(A) 60 (B) 80 (C*) 20 (D) 22

Sol. Total surface area of eight cubes = $8 \times 6 \times \left(\frac{1}{2} \times \frac{1}{2}\right)$

Apply the formula

$$\text{Surface area on } n \text{ split of a cube} = 8^n \times 6 \times \left(\frac{1}{2}\right)^{2n}$$

$$6291456 = 8^n \times 6 \times \left(\frac{1}{2}\right)^{2n}$$

$$\text{हल. आठ घनों का कुल पृष्ठीय क्षेत्रफल} = 8 \times 6 \times \left(\frac{1}{2} \times \frac{1}{2}\right)$$

सूत्र को प्रयुक्त कर

$$\text{एक घन से प्राप्त } n \text{ घनों का पृष्ठीय क्षेत्रफल} = 8^n \times 6 \times \left(\frac{1}{2}\right)^{2n}$$

$$6291456 = 8^n \times 6 \times \left(\frac{1}{2}\right)^{2n}$$

A-5. Volume of N_2 at NTP required to form a mono layer on the surface of iron catalyst is 8.15 ml/gram of the adsorbent. What will be the surface area of the adsorbent per gram if each nitrogen molecule occupies $16 \times 10^{-22} \text{ m}^2$.

NTP पर आयरन उत्प्रेरक की सतह पर एकल परत बनाने के लिए, प्रति ग्राम अधिशोषक के लिये N_2 का 8.15 ml आयतन आवश्यक है। अधिशोषक का पृष्ठीय क्षेत्रफल क्या होगा यदि प्रत्येक नाइट्रोजन अणु $16 \times 10^{-22} \text{ m}^2$ आयतन घेरता हो।

(A) $16 \times 10^{-16} \text{ cm}^2$ (B*) $0.35 \text{ m}^2/\text{g}$ (C) $39 \text{ m}^2/\text{g}$ (D) 22400 cm^2

Sol. The volume of N_2 at STP required to cover the iron surface with monolayer = 8.15 ml g⁻¹

Area occupied by single molecule = $16 \times 10^{-18} \text{ cm}^2$

22400 ml of N_2 at STP contains = N_A molecule of N_2

$$\therefore 8.15 \dots = \frac{8.15 \times N_A}{22400} = 2.19 \times 10^{20} \text{ molecule of } N_2$$

Area occupied by 2.19×10^{20} molecule of N_2 = $2.19 \times 10^{20} \times 16 \times 10^{-18} \text{ cm}^2 = 35.06 \times 10^2 \text{ cm}^2$
surface area of the iron adsorbed = $0.35 \text{ m}^2 \text{ g}^{-1}$

$$\text{In short A} = \frac{\text{Volume covered by the } N_2 \text{ molecule} \times N_A \times \text{Area occupied by single molecule}}{22400}$$

हल एकल परत के साथ आयरन की सतह को घेरने के लिए STP पर N_2 का आवश्यक आयतन = 8.15 ml g⁻¹

एकल अणु द्वारा घेरा गया क्षेत्रफल = $16 \times 10^{-18} \text{ cm}^2$

22400 ml STP पर N_2 के 22400 ml = N_2 के N_A अणु

$$\therefore 8.15 \dots = \frac{8.15 \times N_A}{22400} = 2.19 \times 10^{20} N_2 \text{ के अणु}$$

N_2 के 2.19×10^{20} अणु द्वारा घेरा गया क्षेत्रफल = $2.19 \times 10^{20} \times 16 \times 10^{-18} \text{ cm}^2 = 35.06 \times 10^2 \text{ cm}^2$

आयरन के द्वारा अधिशोषित किया गया पृष्ठीय क्षेत्रफल = $0.35 \text{ m}^2 \text{ g}^{-1}$

$$\text{संक्षेप में A} = \frac{N_2 \text{ अणु द्वारा घेरा गया आयतन} \times N_A \times \text{एकल अणु द्वारा घेरा गया क्षेत्रफल}}{22400}$$

A-6. There is desorption of physical adsorption when :

(A*) temperature is increased (B) temperature is decreased
(C) pressure is increased (D) concentration is increased

भौतिक अधिशोषण का विशेषण होता है जब :

(A*) तापमान में वृद्धि होती है। (B) तापमान में कमी होती है।
(C) दाब में वृद्धि होती है। (D) सान्द्रता में वृद्धि होती है।

Sol. Physical adsorption decreases as temperature increases.

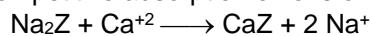
हल. भौतिक अधिशोषण ताप बढ़ाने पर घटता है।

A-7. The rate of chemisorption :

(A) decreases with increase of pressure (B*) increases with increase of pressure
(C) is independent of pressure (D) is independent of temperature

रासायनिक अधिशोषण की दर :

(A) दाब की वृद्धि के साथ कम होती है। (B*) दाब की वृद्धि के साथ बढ़ती है।
 (C) दाब से स्वतंत्र रहती है। (D) ताप से स्वतंत्र रहती है।


Sol. On increasing pressure more molecule will into contact with the surface of solid adsorbent.
हल. दाब बढ़ाने पर, अधिकतम अणु ठोस अधिशोषक के सम्पर्क में आते हैं।

A-8. Softening of hard water is done using sodium aluminium silicate (zeolite). This causes :

(A*) adsorption of Ca^{2+} and Mg^{2+} ions of hard water replacing Na^+ ions.
 (B) adsorption of Ca^{2+} and Mg^{2+} ions of hard water replacing Al^{3+} ions
 (C) both (A) and (B)
 (D) none of these

कठोर जल को सोडियम एलुमिनियम सिलिकेट (जिओलाइट) द्वारा मृदु किया जाता है। इसका कारण है।
 (A*) कठोर जल के Ca^{2+} तथा Mg^{2+} आयन का अधिशोषण करके, आवेश को Na^+ द्वारा विस्थापित किया जाता है
 (B) Al^{3+} आयन द्वारा विस्थापित कर कठोर जल के Ca^{2+} तथा Mg^{2+} का अधिशोषण करके
 (C) (A) तथा (B) दोनों
 (D) उपरोक्त में से कोई नहीं

Sol. **Softening of hard water** : Ion exchange resins used for softening of hard water is based upon selective and competitive adsorption of ions on resins.

The organic polymers containing groups like $-\text{COOH}$, $-\text{SO}_3\text{H}$ and $-\text{NH}_2$ etc. possess the property of selective adsorption of ions from solution. These are quite useful in the softening of water.

हल. **कठोर जल का मृदुकरण** : कठोर जल के मृदुकरण के लिए प्रयुक्त आयन विनिमय रेजिन स्वयं पर आयन के चयनात्मक तथा प्रतिगामी अधिशोषण पर आधारित होती है।

कार्बनिक बहुलक $-\text{COOH}$, $-\text{SO}_3\text{H}$ तथा $-\text{NH}_2$ इत्यादि जैसे समूह रखते हैं जो विलयन से आयनों के चयनात्मक अधिशोषण का गुण रखते हैं। यह जल को मृदु करने में काफी लाभदायक होते हैं।

Section (B) : Catalysis

खण्ड (B) : उत्प्रेरण

B-1. Which one is false in the following statement ?

(A) A catalyst is specific in its action
 (B) A very small amount of the catalyst can alter the rate of a reaction.
 (C) The number of free valencies on the surface of the catalyst increases on sub-division
 (D*) Ni is used as a catalyst in the manufacture of ammonia
 निम्न कथन में कौनसा गलत है ?
 (A) एक उत्प्रेरक क्रिया में विशिष्ट होता है।
 (B) उत्प्रेरक की बहुत थोड़ी सी मात्रा एक अभिक्रिया की दर को परिवर्तित कर सकती है।
 (C) उप विभाजन करने पर उत्प्रेरक की सतह पर मुक्त संयोजकता की संख्या बढ़ती है।
 (D*) अमोनिया के निर्माण में उत्प्रेरक के रूप में Ni को प्रयुक्त करते हैं।

Sol. Finely divided iron is used as catalyst in manufacture of NH_3 .

हल. अतिसूक्ष्म आयरन का उपयोग अमोनिया निर्माण में उत्प्रेरक की भूमिका किया जाता है।

B-2. A catalyst increases rate of reaction by :

(A) Decreasing enthalpy (B) Decreasing internal energy
 (C*) Decreasing activation energy (D) Increasing activation energy

एक उत्प्रेरक निम्न द्वारा अभिक्रिया की दर बढ़ाता है :

(A) एथैल्पी कम करके (B) आन्तरिक ऊर्जा कम करके
 (C*) सक्रियण ऊर्जा कम करके (D) सक्रियण ऊर्जा बढ़ाकर

Sol. Catalyst provides new path to the chemical reaction which has lower value of activation energy. Reactant and product will not be affected, so there will not be any change in state parameter like enthalpy and internal energy.

हल. उत्प्रेरक रासायनिक अभिक्रिया के लिए एक नया पथ प्रदान करता है जिसकी सक्रियण ऊर्जा अपेक्षाकृत कम होती है। अभिकर्मक एवं उत्पाद दोनों ही प्रभावित नहीं होते हैं, इसलिए अवस्था मापक्रम जैसे एन्थैल्पी एवं आन्तरिक ऊर्जा में कोई परिवर्तन नहीं होता है।

Section (C) : Classification and Preparation of Colloid

खण्ड (C) : कोलॉइड का वर्गीकरण एवं उनके बनाने की विधि

C-1. Colloidal solution of gold prepared by different methods of different colours because of :

- (A*) different diameters of colloidal gold particles
- (B) variable valency of gold
- (C) different concentration of gold particles
- (D) impurities produced by different methods

विभिन्न विधियों द्वारा प्राप्त गोल्ड का कोलॉइडी विलयन, विभिन्न रंगों का होता है। इसका कारण है :

(A*) कोलॉइडी गोल्ड कणों का भिन्न व्यास होना	(B) गोल्ड की परिवर्ती संयोजकता
(C) गोल्ड कणों की सान्द्रता भिन्न होना	(D) विभिन्न विधियों द्वारा अशुद्धियाँ उत्पन्न होना

Sol. Different colloidal particle will provide different colour to the sol.

हल. विभिन्न प्रकार के कोलॉइडी कण सॉल को विभिन्न रंग प्रदान करते हैं।

C-2. At CMC, the surfactant molecules :

(A) Decomposes	(B) Become completely soluble
(C*) Associate	(D) Dissociate

CMC पर, पृष्ठ-सक्रियक अणु होते हैं :

(A) विघटित	(B) पूर्ण रूप से विलेय हो जाते हैं।
(C*) संगुणित	(D) वियोजित

Sol. Association occurs at CMC so colloid is formed.

हल. CMC पर संगुणन होता है इसलिए कोलॉइड बनता है।

Section (D) : Purification and Properties of Colloid

खण्ड (D) : कोलॉइड का शुद्धिकरण एवं उनको बनाने की विधि

D-1. A colloidal solution can be purified by the following method :

(A*) dialysis	(B) peptization	(C) filtration	(D) oxidation
---------------	-----------------	----------------	---------------

निम्न प्रक्रम द्वारा एक कोलॉइडी विलयन का शुद्धिकरण किया जा सकता है :

(A*) अपोहन	(B) पेप्टीकरण
(C) फिल्टर करना (filtration)	(D) ऑक्सीकरण

Sol. Dialysis is used to purify colloid.

हल. अपोहन का उपयोग कोलॉइड के शुद्धिकरण में किया जाता है।

D-2. Peptisation is :

- (A) conversion of a colloidal into precipitate form
- (B*) conversion of precipitate into colloidal sol
- (C) conversion of metal into colloidal sol by passage of electric current
- (D) conversion of colloidal sol into macromolecules

पेप्टीकरण है :

- (A) कोलॉइडी विलयन का अवक्षेप में रूपान्तरण
- (B*) अवक्षेप का कोलॉइडी सॉल में रूपान्तरण
- (C) वैद्युत-धारा को प्रवाहित कर धातु का कोलॉइडी सॉल में रूपान्तरण
- (D) कोलॉइडी सॉल का वृहद अणु में रूपान्तरण

Sol. Process by which precipitate is converted into colloid is known as peptisation.

हल. वह प्रक्रिया जिसके द्वारा एक अवक्षेप, कोलॉइड में परिवर्तित हो जाता है, उसे पेप्टीकरण कहते हैं।

D-3. Bleeding is stopped by the application of ferric chloride. This is because :

- (A) the blood starts flowing in opposite direction
- (B) the blood reacts and forms a solid, which seals the blood vessel

(C*) the blood is coagulated and thus the blood vessel is sealed

(D) the ferric chloride seals the blood vessel.

फेरिक्कलोराइड को काम में लेकर रक्त-स्त्राव को रोका जा सकता है, इसका कारण है :

(A) रक्त विपरित दिशा में बहने लग जाता है।

(B) रक्त क्रिया कर एक ठोस का निर्माण करता है, जो कि रक्त नलिका को बंद कर देता है।

(C*) रक्त स्कन्दित हो जाता है इसलिए रक्त नलिका से स्त्राव बंद हो जाता है।

(D) फेरिक क्लोराइड रक्त नलिका को बंद करता है।

Sol. Blood is a colloidal solution containing a -ve charge colloidal particle (Albuminoid), bleeding can be stopped by use of alum or FeCl_3 solution. The addition of Al^{3+} or Fe^{3+} causes coagulation of blood, so bleeding stops.

हल. रक्त ऋणावेशित कोलॉइडी कण (एल्बुमिनोइड) रखने वाला एक कोलॉइडी विलयन है। जब रक्त में एलम अथवा FeCl_3 विलयन को प्रयुक्त किया जाता है तब Al^{3+} अथवा Fe^{3+} के धनावेशित कण, रक्त के ऋणावेशित कोलॉइडी कणों को अवक्षेपित कर देते हैं। जिससे रक्त थक्के के रूप में जम जाता है और रक्त का बहना रुक जाता है।

Section (E) : Coagulation, Protection And application of colloid

खण्ड (E) : स्कंदन, रक्षण एवं कोलॉइड के अनुप्रयोग

E-1. Gold number of a lyophilic sol is such property that:

(A) the larger its value, the greater is the peptising power

(B) the lower its value, the greater is the peptising power

(C*) the lower its value, the greater is the protecting power

(D) the larger its value, the greater is the protecting power

एक द्रवस्नेही सॉल की स्वर्ण संख्या इस प्रकार का गुण है कि

(A) जितना अधिक इसका मान होता है उतनी ही पेप्टीकरण क्षमता अधिक होती है।

(B) जितना कम मान होता है, उतनी ही पेप्टीकरण क्षमता अधिक होती है।

(C*) जितना कम इसका मान होता है, उतनी ही रक्षण क्षमता अधिक होती है।

(D) जितना मान अधिक होता है, उतनी ही रक्षण क्षमता अधिक होती है।

Sol. Gold number $\propto \frac{1}{\text{Protecting power}}$.

हल. स्वर्ण संख्या $\propto \frac{1}{\text{रक्षण क्षमता}}$.

E-2. Protective sols are :

(A*) lyophilic (B) lyophobic (C) both (A) and (B) (D) none of (A) and (B)

रक्षक सॉल निम्न है :

(A*) द्रवस्नेही (B) द्रवविरोधी (C) (A) तथा (B) दोनों (D) (A) तथा (B) दोनों नहीं

Sol. Their protective action is because of their lyophilic nature.

हल. इनकी रक्षण क्षमता इनकी द्रवस्नेही प्रकृति के कारण प्राप्त होती है।

E-3. For the coagulation of 200 mL of As_2S_3 solution, 10 mL of 1 M NaCl is required. What is the coagulating value (number of milli moles of solute needed for coagulation of 1 liter of solution) of NaCl .

As_2S_3 विलयन के 200 ml के स्कंदन के लिए 1 M NaCl के 10 mL आवश्यक है। NaCl का स्कंदन मान (1 लीटर विलयन के स्कंदन के लिए आवश्यक विलय के मिलीमोलों की संख्या) क्या है ?

(A) 200 (B) 100 (C*) 50 (D) 25

Sol. 10 ml of 1 M NaCl contains $\text{NaCl} = 10 \times 1 = 10$ milli mole

200 ml of As_2S_3 required NaCl for the coagulation = 10 milli mole

$\therefore 1000 \text{ ml of } \text{As}_2\text{S}_3 \text{ required } \text{NaCl} \text{ for the coagulation} = 10 \times 1000 / 200 = 50 \text{ milli mole}$

Sol. 1 M NaCl का 10 mL = $10 \times 1 = 10$ मिलीमोल NaCl युक्त हैं

200 ml As_2S_3 के स्कंदन के लिए आवश्यक $\text{NaCl} = 10$ मिलीमोल

$\therefore 1000 \text{ ml } \text{As}_2\text{S}_3 \text{ के स्कंदन के लिए आवश्यक } \text{NaCl} = 10 \times 1000 / 200 = 50 \text{ मिलीमोल}$

E-4. Which of the following ions is most effective in the coagulation of an arsenious sulphide solution ?

एक आर्सेनियस सल्फाइड विलयन के स्कंदन में कौनसा आयन सर्वाधिक प्रभावी है ?

(A) K^+ (B) Mg^{2+} (C*) Al^{3+} (D) C

Sol. Effectiveness of ion in coagulation \propto charge on coagulating ion.

हल. स्कंदन में आयन की प्रभाविता \propto स्कंदनकारी आयन पर आवेश।

E-5. Which of the following ions is most effective in the coagulation of ferric hydroxide solution ?

फैरिक हाइड्रॉक्साइड विलयन के स्कंदन में कौनसा आयन सर्वाधिक प्रभावी है ?

(A) Cl^- (B) Br^- (C) NO_2^- (D*) SO_4^{2-}

Sol. Ferric hydroxide is a positive sol.

हल. फैरिक हाइड्रॉक्साइड एक धनात्मक सॉल है।

Section (F) : Emulsion and Gel

खण्ड (F) : पायस तथा जैल

F-1. Small liquid droplets dispersed in another liquid is called :

(A) Suspension (B*) Emulsion (C) Gel (D) True solution

किसी दूसरे द्रव में एक द्रव की बूंदों का परिक्षिप्त होना कहलाता है :

(A) निलम्बन (B*) पायस (C) जैल (D) वास्तविक विलयन

Sol. Liquid in liquid is known as emulsion. (द्रव में द्रव की उपस्थिति को पायस कहते हैं।)

PART - III : MATCH THE COLUMN

भाग - III : कॉलम को सुमेलित कीजिए (MATCH THE COLUMN)

1. Match list I with list II and select the correct answer :

	List-I		List-II
(P)	Mechanical property of colloid	(1)	Dialysis
(Q)	Purification	(2)	Peptization
(R)	Gold number	(3)	Brownian movement
(S)	Formation of a sol	(4)	Protection

सूची I तथा सूची II को सुमेलित कीजिए तथा सही उत्तर का चयन कीजिए।

	सूची-I		सूची-II
(P)	कोलॉइड का यांत्रिक गुण	(1)	अपोहन
(Q)	परिशोधन	(2)	पेप्टीकरण
(R)	गोल्ड संख्या	(3)	ब्राउनियन गति
(S)	एक सॉल का निर्माण	(4)	संरक्षण

Code (कोड) :

	P	Q	R	S	P	Q	R	S
(A)	3	4	1	2	(B)	1	2	4
(C*)	3	1	4	2	(D)	2	3	1

Sol. (A) Mechanical property of colloid particle is known as Brownian movement.

(B) Purification of colloids is done by dialysis.

(C) Gold number $\propto \frac{1}{\text{protection power}}$

(D) Formation of a sol is done by peptization.

Sol. (A) कोलॉइड कणों के यांत्रिक गुण को ब्राउनियन गति कहते हैं।

(B) कोलॉइड का परिशोधन, अपोहन द्वारा किया जाता है।

(C) गोल्ड संख्या $\propto \frac{1}{\text{रक्षण क्षमता}}$

(D) एक सॉल का निर्माण पेप्टीकरण द्वारा किया जाता है।

2. Match list I with list II and give the correct answer :

	List-I		List-II
(A)	Gold sol	(p)	Bredig's Arc method

(A) aerosol	(B) foam	(C) emulsion	(D*) gel
कोलॉइडी निकाय जो कि ठोस परिक्षण माध्यम में परिक्षित द्रव होता है, कहलाता है :			
(A) एरोसॉल	(B) झाग	(C) पायस	(D*) जैल

Sol. Liquid in solid sol is gel.
हल. ठोस सॉल में द्रव की उपस्थिति को जैल कहते हैं।

4. Which of the following statements is not correct ?

(A) A colloidal solution is a heterogeneous two-phase system
(B*) Silver sol in water is an example of lyophilic solution.
(C) Metal hydroxides in water are examples of lyophobic solution
(D) Liquid-liquid colloidal solution is not a stable system

निम्न में से कौनसा कथन सही नहीं है ?

(A) एक कोलॉइडी विलयन, एक विषमांगी द्विप्रावस्था निकाय होता है।
(B*) जल में सिल्वर सॉल एक द्रवस्नेही विलयन का एक उदाहरण है।
(C) जल में धातु हाइड्रॉक्साइड, द्रवविरोधी विलयन का उदाहरण है।
(D) द्रव-द्रव कोलॉइडी विलयन स्थायी तंत्र नहीं है।

Sol. Silver sol in water is an example of lyophobic solution.
हल. जल में सिल्वर सॉल एक द्रवविरोधी विलयन का एक उदाहरण है।

5. Size of colloidal particles may range from :

(A*) 1 to 1000 nm (B) 10 to 100 pm (C) 1 to 100 μm (D) 1 to 10 mm

कोलॉइडी कणों के आकार की परास निम्न है :

(A*) 1 से 1000 nm तक (B) 10 से 100 pm तक (C) 1 से 100 μm तक (D) 1 से 10 mm तक

Sol. Colloidal particle has size range of 1 to 1000 nm.
हल. कोलॉइड कण की आकार परास 1 से 1000 nm होती है।

6. Which of the following represents a multimolecular colloidal particles?

(A) Starch (B*) A sol of gold (C) Proteins (D) Soaps

निम्न में से कौन बहुआणिक कोलॉइडी कणों को प्रदर्शित करता है ?

(A) स्टार्च (B*) गोल्ड का सॉल (C) प्रोटीन (D) साबुन

Sol. Gold sol is multimolecular colloid.
हल. गोल्ड का सॉल बहुआणिक कोलॉइड होता है।

7. Which of the following anions will have minimum flocculation value for the ferric oxide solution ?

फेरिक ऑक्साइड विलयन के लिए निम्न में से किस ऋणायन का ऊर्णन मान (flocculation) न्यूनतम होगा ?

(A) Cl^- (B) Br^- (C) SO_4^{2-} (D*) $[\text{Fe}(\text{CN})_6]^{3-}$

Sol. Higher the charge on coagulating ion, lesser the flocculation value.
हल. स्कंदनकारी आयन पर जितना अधिक आवेश होता है, ऊर्णन मान उतना ही कम होता है।

8. Which of the following represents a macromolecular colloidal particles ?

(A) Solution of gold (B*) Cellulose (C) Soaps (D) Synthetic detergents

निम्न में से वृहद आणिक कोलॉइडी कण है ?

(A) गोल्ड का विलयन (B*) सैलूलोज (C) साबुन (D) संश्लेषित अपमार्जक

Sol. Cellulose is macromolecular colloid.
हल. सैलूलोज एक वृहद आणिक कोलॉइड है।

9. Gold number of some lyophilic sols are :

I	Casein	0.01
II	Haemoglobin	0.03
III	Gum arabic	0.15
IV	Sodium oleate	0.40

Which has maximum protective power :
कुछ द्रव स्नेही सॉल की स्वर्ण-संख्या निम्न है :

I	कैसीन	0.01
---	-------	------

II	हीमोग्लोबीन	0.03
III	गम अरेबिक	0.15
IV	सोडियम ओलिएट	0.40

निम्न में से किसका रक्षण सामर्थ्य अधिकतम है ?

(A*) I (B) II (C) III (D) IV

Sol. Lower the gold number, higher the protecting power of lyophilic colloid.

हल. स्वर्ण-संख्या जितनी कम होगी, द्रव स्नेही कोलॉइड की संरक्षी क्षमता उतनी ही अधिक होगी।

10. Arsenic (III) sulphide forms a sol with a negative charge. Which of the following ionic substances should be most effective in coagulating the sol ?

आर्सेनिक (III) सल्फाइड एक ऋणात्मक आवेश के साथ एक सॉल बनाता है। सॉल को स्कन्दित करने के लिए निम्न में से कौनसा आयनिक पदार्थ सबसे अधिक प्रभावी है ?

(A) KCl (B) MgCl₂ (C*) Al₂(SO₄)₃ (D) Na₃PO₄

Sol. More the charge on cation, more the effectiveness of the electrolyte.

हल. धनायन पर जितना अधिक आवेश होगा, विद्युत अपघट्य का प्रभाव उतना ही अधिक होगा।

11. Smoke is a dispersion of :

(A) gas in gas (B) gas in solid (C*) solid in gas (D) liquid in gas
धुँआ निम्न का परिक्षेपण है :

(A) गैस में गैस का (B) ठोस में गैस का (C*) गैस में ठोस का (D) गैस में द्रव का

Sol. Smoke is solid in gas dispersion.

हल. धुँआ, गैस में ठोस का परिक्षेपण है।

12. Smoke has generally blue tinge. It is due to :

(A*) scattering (B) coagulation (C) Brownian motion (D) electro-osmosis
धुँआ प्रायः नीले रंग का होता है। यह निम्न के कारण है :

(A*) प्रकीर्णन (B) स्कंदन (C) ब्राउनियन गति (D) वैद्युत-परासरण

Sol. Smoke is blue because of scattering of light.

हल. धुँआ प्रकाश के प्रकीर्णन के कारण नीला होता है।

13. Which one of the following statements is false for hydrophilic sols ?

(A) they do not require electrolytes for stability
(B*) their viscosity is of the order of that of water
(C) their surface tension is usually lower than that of dispersion medium.
(D) none of these

निम्न में से कौनसा वाक्य जल-स्नेही सॉल के लिए गलत है?

(A) उनमें स्थायित्व के लिए विद्युत अपघट्य की आवश्यकता नहीं होती है।

(B*) इनकी श्यानता जल की कोटि की होती है।

(C) उनका पृष्ठ तनाव सामान्यतः परिक्षेपण माध्यम से कम होता है।

(D) उपरोक्त में से कोई नहीं।

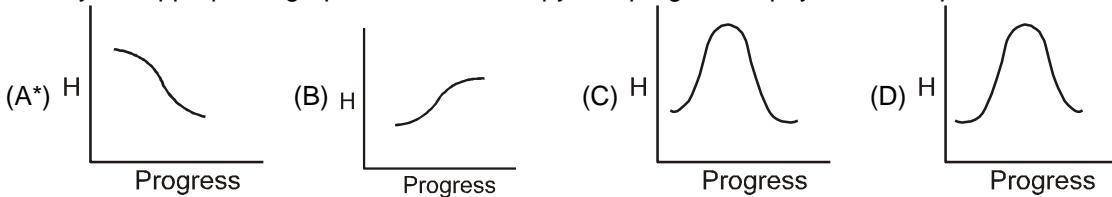
Sol. Viscosity of lyophilic colloid is less than water.

हल. द्रवस्नेही कोलॉइड की श्यानता जल की तुलना में कम होती है।

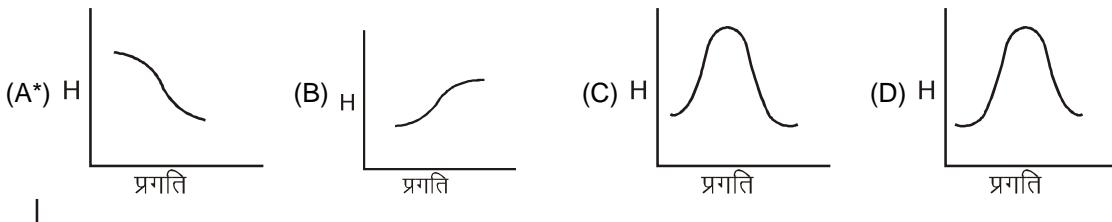
14. Soaking of sponge by water is an example of :

(A) Simple adsorption (B) Physical adsorption
(C) Chemisorption (D*) Absorption

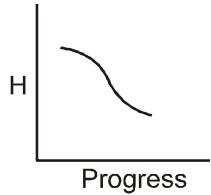
एक स्पंज का जल के द्वारा भीग जाना, निम्न का उदाहरण है :

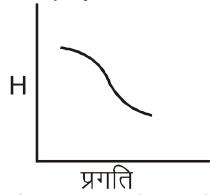

(A) सामान्य अधिशोषण (B) भौतिक अधिशोषण

(C) रासायनिक अधिशोषण (D*) अवशोषण


Sol. Sponge will be completely soaked by water, so it is absorption.

हल. स्पंज पूर्णरूप से जल को सोख लेती है, इसलिए यह अवशोषण है।


15. Identify the appropriate graph between enthalpy and progress of physical adsorption.


भौतिक अधिशोषण से सम्बन्धित एथैल्पी तथा अभिक्रिया की प्रगति के मध्य सही आरेख पहचानिये :

Sol.

For physical adsorption, activation energy is low and ΔH is negative.

भौतिक अधिशोषण के लिए, सक्रियण ऊर्जा न्यून होती है तथा ΔH ऋणात्मक होता है।

16. Hydrolysis of ester in catalysed by acid. Rate of hydrolysis of ester were obtained initially and after some ester has been hydrolysed as R_0 and R_t then (same temp.)

(A) $R_0 = R_t$ (B*) $R_0 < R_t$ (C) $R_0 > R_t$ (D) Cannot be determined

एस्टर के जल अपघटन को अम्ल द्वारा उत्प्रेरित किया जाता है। ऐस्टर के जलअपघटन की दर प्रारम्भ में तथा कुछ एस्टर जलअपघटित होने के पश्चात् R_0 तथा R_t के रूप में प्राप्त हुई, तब (समान ताप)

(A) $R_0 = R_t$ (B*) $R_0 < R_t$ (C) $R_0 > R_t$ (D) ज्ञात नहीं किया जा सकता

Sol. Hydrolysis of ester produces acid which catalyses its hydrolysis so as reaction proceed, rate of reaction increases.

हल. एस्टर का जल अपघटन अम्ल उत्पादित करता है अर्थात् इसके जल अपघटन को उत्प्रेरित करता है। अभिक्रिया के आगे बढ़ने के साथ-साथ अभिक्रिया की दर बढ़ती है।

PART - II : SINGLE OR DOUBLE INTEGER TYPE

भाग - II : एकल या द्वि-पूर्णांक मान प्रकार (SINGLE OR DOUBLE INTEGER TYPE)

1. When a graph is plotted between $\log x/m$ and $\log p$, it is straight line with an angle 45° and intercept 0.3010 on y-axis. If initial pressure is 0.3 atm, what will be the amount of gas adsorbed per gram of adsorbent : (Report your answer after multiplying by 10)

जब एक ग्राफ को $\log x/m$ तथा $\log p$ के मध्य खींचा जाता है तो 45° के कोण पर एक सीधी रेखा प्राप्त होती है तथा y-अक्ष पर 0.3010 का अन्तःखण्ड मिलता है। यदि प्रारम्भिक दाब 0.3 atm है तो अवशोषक के द्वारा प्रति ग्राम अवशोषित गैस की मात्रा क्या होगी ? (अपने उत्तर को 10 से गुणा देकर बताओं)

Ans. 6

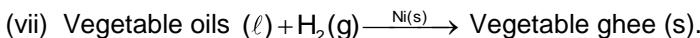
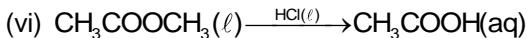
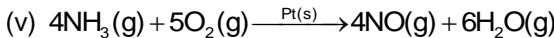
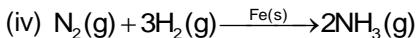
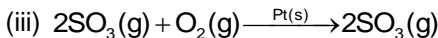
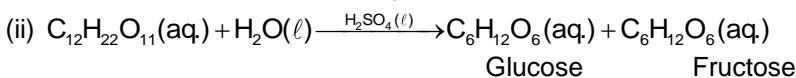
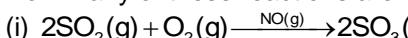
Sol. $\log \frac{x}{M} = \log k + \frac{1}{n} \log P$

$$\begin{aligned}\frac{1}{n} &= \tan 45^\circ & \log k &= 0.3010 \\ n &= 1 & k &= 2 \\ \frac{x}{m} &= 2 \times (0.3)^1 \\ x &= 0.6\end{aligned}$$

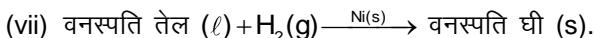
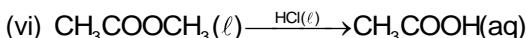
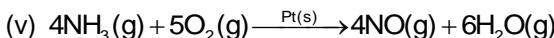
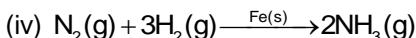
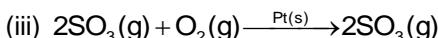
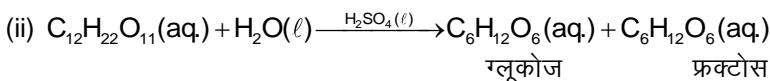
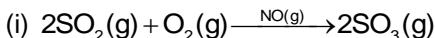
2. The volume of nitrogen gas (measured at STP) required to cover a sample of silica gel with a monomolecular layer is $129\text{cm}^3/\text{g}$ of gel. Calculate the surface area per gram of the gel if each nitrogen molecule occupies $16.2 \times 10^{-20}\text{m}^2$. (Report your answer after dividing by 10)

एक एकल आण्विक परत के साथ सिलिका जैल (gel) के एक प्रादर्श को घेरने के लिए आवश्यक नाइट्रोजन गैस (STP पर मापित) का आयतन $129\text{ cm}^3/\text{g}$ जैल (gel) है। जैल (gel) का प्रति ग्राम पृष्ठीय क्षेत्रफल परिकलित कीजिए, यदि प्रत्येक नाइट्रोजन अणु $16.2 \times 10^{-20}\text{m}^2$ क्षेत्रफल घेरता है। (अपने उत्तर को 10 से भाग देकर बताओं)

Ans. 56








Sol. Surface area per gram of silica gel = area occupied by each $\text{N}_2 \times$ no. of N_2 molecules

$$= 16.2 \times 10^{-20} \times \left\{ \left(\frac{129}{22400} \right) \times 6.02 \times 10^{23} \right\} = 560\text{m}^2$$








Sol. सिलिका जैल (gel) का प्रतिग्राम पृष्ठीय क्षेत्रफल = प्रत्येक N_2 द्वारा घेरा गया क्षेत्रफल $\times \text{N}_2$ अणुओं की संख्या

$$= 16.2 \times 10^{-20} \times \left\{ \left(\frac{129}{22400} \right) \times 6.02 \times 10^{23} \right\} = 560\text{m}^2$$

3. How many of these reactions are homogeneously catalyzed?

निम्न में से कितनी अभिक्रियाएं समांगी उत्प्रेरित हैं ?

Ans. 3 (i, ii, vi)

4. Coagulation value of the electrolytes AlCl_3 and NaCl for As_2S_3 sol are 0.093 and 52 respectively. How many times AlCl_3 has greater coagulating power than NaCl .

As_2S_3 सॉल के लिए वैद्युत अपघटय AlCl_3 व NaCl के स्कंदन के मान क्रमशः 0.093 तथा 52 हैं। AlCl_3 की स्कंदन क्षमता NaCl से कितने गुना अधिक है ?

Ans. 560

Sol.
$$\frac{\text{coagulation power of } \text{AlCl}_3}{\text{coagulation power of } \text{NaCl}} = \frac{\text{coagulation value of } \text{NaCl}}{\text{coagulation value of } \text{AlCl}_3}$$

$$\frac{\text{AlCl}_3 \text{ के लिए स्कन्दन सामर्थ्य}}{\text{NaCl के लिए स्कन्दन सामर्थ्य}} = \frac{\text{NaCl के लिए स्कन्दन मान}}{\text{AlCl}_3 \text{ के लिए स्कन्दन मान}}$$

5. Among the following number of correct statements are :

(i) Stability of lyophilic colloids is mainly due to the strong interaction between dispersed particle and dispersion medium.

(ii) Entropy change for adsorption of gases over solid is positive.

(iii) Gelatin has considerably low value of gold number and is effective protective colloid.

(iv) Zeta potential is also responsible for stability of lyophobic colloid solution.

(v) Surface tension of lyophilic colloidal solution is lesser than that of dispersion medium.

निम्न में से सही कथनों की संख्या है :

(i) द्रव स्नेही कोलॉइड का स्थायित्व मुख्यतः परिक्षिप्त कण (dispersed particle) व परिक्षेपण माध्यम (dispersion medium) के मध्य प्रबल अन्योन्य क्रिया के कारण होता है।

(ii) ठोस पर गैसों के अधिशोषण के लिए एन्ट्रॉपी परिवर्तन धनात्मक होता है।

(iii) जिलेटिन की स्वर्ण संख्या (gold number) का मान कम होता है तथा यह प्रभावी संरक्षी कोलॉइड (effective protective colloid) है।

(iv) जीटा विभव (Zeta potential) द्रव विरोधी कोलॉइड विलयन के स्थायित्व के लिए भी उत्तरदायी है।

(v) द्रव स्नेही कोलॉइड विलयन का पृष्ठ तनाव परिक्षेपण माध्यम की अपेक्षा कम होता है।

Ans. 4

Sol. $(\Delta S)_{\text{adsorption}} = -ve$

Sol. $(\Delta S)_{\text{अधिशोषण}} = -ve$

6. For the just coagulation of 250 mL of Fe(OH)_3 sol, 2 mL of 1 M Na_2SO_4 electrolyte is required. What is the coagulating value of Na_2SO_4 electrolyte.

Fe(OH)_3 सॉल 250 mL के पूर्ण स्कंदन (coagulation) के लिए, 1 M Na_2SO_4 विद्युत अपघट्य का 2 mL आवश्यक है, तब Na_2SO_4 विद्युत अपघट्य का स्कंदन मान क्या है ?

Ans. 8

Sol. Coagulating value = $\frac{\text{millimole of electrolyte}}{\text{volume of solution (in lit.)}} = \frac{2 \times 1}{\frac{250}{1000}} = 8$

Sol. स्कंदन मान = $\frac{\text{विद्युत अपघट्य के मिलीमोल}}{\text{विलयन का आयतन (लीटर में)}} = \frac{2 \times 1}{\frac{250}{1000}} = 8$

7. The minimum concentration of an electrolyte required to cause coagulation of a sol is called its flocculation value. It is expressed in millimoles per litre. If the flocculation value of MgSO_4 for standard As_2S_3 sol is 3.33. How many milligrams of MgSO_4 is to be added to 20 ml standard As_2S_3 sol so that flocculation just starts ?

किसी सॉल के स्कंदन के लिए आवश्यक विद्युत अपघट्य की न्यूनतम सांदर्ता स्कंदन मान कहलाती है। इसे मिलीमोल प्रतिलीटर में व्यक्त करते हैं। यदि MgSO_4 का स्कंदन मान मानक As_2S_3 सॉल के लिए 3.33 है तो कितने मिलीग्राम MgSO_4 की आवश्यकता 20 mL मानक As_2S_3 सॉल के लिए होगी ?

Ans. 8

Sol. Flocculation value = 3.33 millimoles/L; Millimoles required for 20 mL = $\frac{3.33}{1000} \times 20$

Mass in milligrams required for 20 mL = $\frac{3.33}{1000} \times 20 \times 120 = 8 \text{ mg}$

Sol. ऊर्जन मान = 3.33 मिलीमोल/L; 20 mL के लिए आवश्यक मिलीमोल = $\frac{3.33}{1000} \times 20$

20 mL के लिए आवश्यक द्रव्यमान मिलीग्राम में = $\frac{3.33}{1000} \times 20 \times 120 = 8 \text{ mg}$

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE**भाग - III : एक या एक से अधिक सही विकल्प प्रकार**

1. Which of the following statements about physical adsorption is correct ?

(A) It is always monolayer
 (B*) It is reversible in nature
 (C*) It involves van der Waals interactions between adsorbent and adsorbate
 (D*) It involves small enthalpy of adsorption as compared to chemisorption.

निम्न में से भौतिक अधिशोषण के लिए कौनसा कथन सत्य है ?

(A) यह सदैव एकल परत होती है।
 (B*) यह प्रकृति में उत्क्रमणीय है।
 (C*) अधिशोषक तथा अधिशोष्य के मध्य वॉण्डरवाल अन्योन्य क्रिया होती है।
 (D*) इसमें रासायनिक अधिशोषण की अपेक्षा अधिशोषण की एन्थैल्पी का मान कम होता है।

Sol. Physical adsorption is multilayer.

हल. भौतिक अधिशोषण बहुपरतीय होता है।

2. Which of the following statements regarding adsorption is correct ?

(A*) Extent of adsorption of gases on charcoal increases with increase in pressure of the gas
 (B) Extent of adsorption is independent of temperature
 (C*) Extent of chemisorption by a given mass of adsorbent is limited
 (D*) Extent of adsorption is dependent on the nature of adsorbent

अधिशोषण के संदर्भ में निम्न में से कौनसे कथन सही है ?

(A*) गैस के दाब में वृद्धि के साथ चारकोल पर गैसों के अधिशोषण की मात्रा में वृद्धि होती है।
 (B) अधिशोषण की मात्रा ताप से स्वतंत्र रहती है।
 (C*) अधिशोषक के एक दिये गये द्रव्यमान पर रासायनिक अधिशोषण की मात्रा सीमित रहती है।
 (D*) अधिशोषण की मात्रा, अधिशोषक की प्रकृति पर निर्भर करती है।

Sol. Adsorption is dependent on temperature.

हल. अधिशोषण ताप पर निर्भर होता है।

3. Which of the following is characteristic of chemisorption?

(A*) it is irreversible (B*) it is specific
 (C) it is multilayer phenomenon (D*) heat of adsorption is generally around 80 – 240 kJ
 निम्न में से कौन रासायनिक अधिशोषण का लाक्षणिक गुण है ?
 (A*) यह अनुक्रमणीय है (B*) यह विशिष्ट है
 (C) यह बहुपरतीय परिघटना है। (D*) अधिशोषण की ऊष्मा सामान्यतः लगभग 80 – 240 kJ है।

Sol. Chemisorption is monolayer phenomenon.

हल. रासायनिक अधिशोषण एकलपरतीय परिघटना है।

4. Which is/are a purely surface phenomena :

(A*) surface tension (B*) adsorption (C) absorption (D) none of these
 निम्न में से शुद्ध रूप से पृष्ठीय परिघटना है/है।
 (A*) पृष्ठ तनाव (B*) अधिशोषण (C) अवशोषण (D) इनमें से कोई नहीं।

Sol. Absorption is a bulk phenomena.

हल. अवशोषण एक बहुत रथूल (वृहद) परिघटना है।

5. Which of the following are correct statements ?

(A*) Spontaneous adsorption of gases on solid surface is an exothermic process as entropy decreases during adsorption
 (B) Formation of micelles takes place when temperature is below Kraft Temperature (T_k) and concentration is above critical micelle concentration (CMC)
 (C*) Longer the length of hydrophobic chain, smaller is the value of critical micelle concentration (CMC)
 (D) According to Hardy-Schulze rule the coagulation (flocculating) value of Fe^{3+} ion will be more than Ba^{2+} or Na^+ .

निम्न में से कौनसा/कौनसे कथन सही है/हैं ?

(A*) गैस का ठोस सतह पर स्वतः अधिशोषण ऊष्माक्षेपी अभिक्रिया है, क्योंकि इस अधिशोषण के दौरान एन्ट्रोपी में कमी आती है।

(B) मिसेल (Micelles) का बनना क्रॉफ्ट ताप (Kraft Temperature) (T_k) से कम ताप पर तथा जब सान्द्रता, क्रांतिक मिसेल सान्द्रता (CMC) से अधिक होती है, तब होता है।

(C*) जलविरोधी शृंखला (hydrophobic chain) की लम्बाई अधिक होने पर, क्रांतिक मिसेल सान्द्रता (CMC) का मान कम होता है।

(D) हार्डी-शुल्जे नियम (Hardy-Schulze rule) के अनुसार Fe^{3+} आयन का स्कंदन मान (coagulating value) Ba^{2+} या Na^+ से अधिक होता है।

Sol. (A) $\Delta G = \Delta H - T\Delta S < 0$ as $\Delta S < 0$ so ΔH has to be negative

(B) Micelles formation will take place above T_k and above CMC

(D) Fe^{3+} ions will have greater flocculability power so smaller flocculating value.

Sol. (A) $\Delta G = \Delta H - T\Delta S < 0$, क्योंकि $\Delta S < 0$, है इसलिए ΔH एक ऋणात्मक मान रखता है।

(B) T_k तथा CMC के ऊपर मिसेल (micelles) का निर्माण होता है।

(D) Fe^{3+} आयन की अधिक ऊर्जन क्षमता होती है इसलिए ऊर्जन का मान कम होता है।

6. Which of the following statements are true for physisorption?

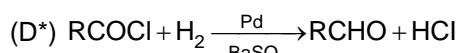
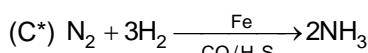
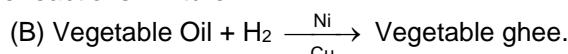
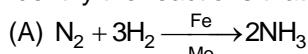
(A*) Extent of adsorption increases with increase in pressure.

(B) It needs activation energy

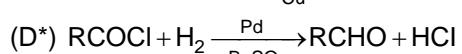
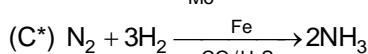
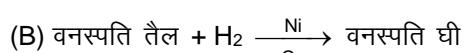
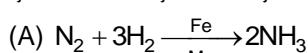
(C*) It can be reversed easily

(D) It occurs at high temperature.

भौतिक अधिशोषण के लिए निम्न में से कौनसा वाक्य सत्य है ?





(A*) दाब में वृद्धि के साथ अधिशोषण की मात्रा बढ़ती है। (B) इसको सक्रियण ऊर्जा की आवश्यकता होती है।

(C*) इसे आसानी से उत्क्रमणीय बनाया जा सकता है। (D) यह उच्च ताप पर होती है।





Sol. Physisorption is reversible and its extent increases with pressure.

हल. भौतिक अधिशोषण उत्क्रमणीय होता है तथा यह दाब के साथ बढ़ता है।

7. Identify the reactions that includes inhibitors in the reactions mixture.

ऐसी अभिक्रियाएँ पहचानिए जिनके अभिक्रिया मिश्रण में अवरोधक होते हैं—

8. Which of the following are the correct :

(A*) A Catalyst remains unchanged in mass and chemical compositions at the end of reactions.

(B*) Finely devided state of catalyst is more efficient for the reactions.

(C) Catalyst change equilibrium state of the reaction.

(D) A catalyst changes the entropy and the free energy of a reaction.

निम्न में से सही कथन कौनसे हैं ?

(A*) एक उत्प्रेरक अभिक्रिया के अन्त तक द्रव्यमान एवं रासायनिक संघटन के सापेक्ष अपरिवर्तित रहता है।

(B*) उत्प्रेरक का महीन चूर्ण अभिक्रिया के लिए अधिक दक्ष होता है।

(C) उत्प्रेरक अभिक्रिया की साम्यावस्था को परिवर्तित कर देता है।

(D) एक उत्प्रेरक अभिक्रिया की एन्ट्रॉपी एवं मुक्त ऊर्जा परिवर्तन को बदल देता है।

9. The diameter of colloidal particle is of the order :

कोलोइडी कण का व्यास निम्न कोटि का होता है :

(A) 10^{-3} m

(B*) 10^{-6} m

(C) 10^{-15} m

(D*) 10^{-7} m

Sol. Colloidal particle diameter is 10^{-9} m to 10^{-6} m.
हल. कोलॉइडल कण का व्यास 10^{-9} m से 10^{-6} m होता है।

10. Which of the following are examples of aerosols?
 (A) Whipped cream (B*) Cloud (C*) Fog (D) Soap lather
 निम्न में से कौन एरोसॉल का उदाहरण है ?
 (A) फैटी हुई क्रीम (Whipped cream) (B*) बादल
 (C*) कोहरा (D) साबुन के ज्वाग

Sol. Solid in gas is known as aerosol.
हल. गैस में ठोस की उपस्थिति को एरोसॉल कहते हैं।

11. Which of the following are hydrophobic sols ?
 (A) Protein sol (B*) Gold sol (C) Gum sol (D*) Fe(OH)_3 sol.
 निम्न में से द्रव विरोधी सॉल कौनसा है ?
 (A) प्रोटीन सॉल (B*) गोल्ड सॉल (C) गम् सॉल (D*) Fe(OH)_3 सॉल

Sol. Gold sol and Fe(OH)_3 sol are hydrophobic.
हल. गोल्ड सॉल एवं Fe(OH)_3 सॉल जल विरोधी हैं।

12. Which of the following are multimolecular colloids ?
 (A*) Sulphur (B) Egg albumin in water (C*) Gold sol (D) Soap solution
 निम्न में से कौन बहुआणिक कोलॉइड है ?
 (A*) सल्फर (B) पानी में अण्डे की जर्दी (C*) स्वर्ण सॉल (D) साबुन का विलयन

Sol. Egg albumin is macromolecular colloid and soap solution is associated colloid.
हल. अण्डे की जर्दी वृहद आणिक कोलॉइड है तथा साबुन का विलयन संगुणित कोलॉइड है।

13. The origin of charge on colloidal solution is
 (A*) Self dissociation (in soaps and detergents) (B*) Electron capture during Bredig's arc method
 (C*) Selective adsorption of ion on their surface (D) It is due to addition of protective colloids
 कोलॉइडी विलयन पर आवेश की उत्पत्ति होती है—
 (A*) स्वतः वियोजन (साबुन तथा अपमार्जक में) (B*) ब्रेडिंग आर्क विधि के दौरान इलेक्ट्रॉन को ग्रहण करना
 (C*) पृष्ठ पर आयनों का चयनात्मक अधिशोषण (D) ऐसा संरक्षी कोलॉइड को मिलाने के कारण होता है।

Sol. Due to addition of protective colloids a protective layer is formed around colloidal particle.
हल. संरक्षी कोलॉइड मिलाने के कारण, कोलॉइडल कणों के चारों ओर एक संरक्षी परत बन जाती है।

14. Which of the following is/are not true for lyophilic colloid ?
 (A*) These are prepared by special indirect methods.
 (B*) The particles must travel towards the anode or cathode under the influence of an electric field.
 (C) These are called on intrinsic colloid
 (D*) Small quantity of electrolyte is sufficient to cause precipitation of these.
 निम्न में से कौनसा/कौनसे कथन द्रवस्नेही कोलॉइड के लिए सत्य नहीं है/है ?
 (A*) यह विशिष्ट अप्रत्यक्ष विधियों द्वारा बनते हैं।
 (B*) कण एनोड या केथोड की ओर विद्युत क्षेत्र के प्रभाव के अन्तर्गत गति करना चाहिए।
 (C) यह मूलभूत (intrinsic) कोलॉइड कहलाते हैं।
 (D*) विद्युत अपघट्य की सूक्ष्म मात्रा इनके अवक्षेपण के लिए पर्याप्त होती है।

Sol. * These are prepared by direct mixing
 * The particles may or may not migrate under the influence of an electric field.
 * Large quantities of electrolytes is required to cause precipitation.

Sol. * यह प्रत्यक्ष मिश्रण के द्वारा बनाये जाते हैं।
 * कण विद्युत क्षेत्र के प्रभाव के अन्तर्गत प्रवासित हो भी सकते हैं और नहीं भी हो सकते हैं।
 * विद्युत अपघट्य की अधिक मात्रा अवक्षेपण के लिए आवश्यक होती है।

15. Which of the following are based on Tyndall effect.
 (A*) Tail of comets (B) Deltas

(C*) Blue colour of sky
निम्न में से टिण्डल प्रभाव पर आधारित है
(A*) पुच्छल तारा
(C*) आकाश का नीला रंग

(D) Coagulation
(B) डेल्टा
(D) स्कंदन

Sol. Delta formation is because of coagulation.
हल. स्कंदन के कारण डेल्टा का निर्माण होता है।

16. Which of the following statements is correct?

(A*) Peptization is the process by which some fresh precipitates are converted into the colloidal state by addition of little suitable electrolyte.
(B*) Metal sols of gold, silver and platinum can be prepared by Bredig's arc method.
(C) Impurities present in a solution makes it more stable.
(D*) Dialysis is a process to remove impurities of ions and molecules from a solution.
निम्न में से कौनसे कथन सही है ?
(A*) पेप्टीकरण वह प्रक्रिया है जिसमें अल्प मात्रा में उपयुक्त वैद्युत अपघट्य को मिलाने पर कुछ ताजा अवक्षेप कोलाइडी अवस्था में परिवर्तित हो जाता है।
(B*) ब्रेडिंग आर्क विधि द्वारा गोल्ड, सिल्वर तथा प्लेटिनम के धातु सॉल को तैयार किया जा सकता है।
(C) विलयन में उपरिथित अशुद्धियाँ इसे अधिक स्थायी बनाती है।
(D*) अपोहन एक विधि है जो एक विलयन से आयन तथा अणुओं की अशुद्धियाँ हटाती है।

Sol. Impurity destabilises the solution. (अशुद्धि, विलयन को विस्थानीकृत कर देती है।)

17. Which is an example of coagulation?

(A*) curdling of milk
(C*) formation of deltas at the river beds
निम्न में से स्कंदन का उदाहरण है?
(A*) दूध का दही बनाना
(C*) नदी के मुहानें पर डेल्टा का निर्माण

(B*) purification of water by addition of alum
(D) formation of ice
(B*) फिटकरी को मिलाकर जल का शुद्धिकरण
(D) बर्फ का निर्माण

Sol. All three are example of coagulation.

हल. उपरोक्त तीनों स्कंदन के उदाहरण हैं।

18. When negatively charged colloids like As_2S_3 sol is added to positively charged $Fe(OH)_3$ sol in suitable amounts

(A*) Both the sols are precipitated simultaneously
(B*) This process is called mutual coagulation.
(C) They become positively charged colloids.
(D) They become negatively charged colloids.
जब पर्याप्त मात्रा में ऋणावेशित As_2S_3 सॉल का कोलॉइडी विलयन, धनावेशित $Fe(OH)_3$ सॉल में मिलाया जाता है।
(A*) दोनों सॉल एक साथ अवक्षेपित होंगे।
(B*) यह प्रक्रिया पारस्परिक स्कंदन (mutual coagulation) कहलाती है।
(C) ये धनावेशित कोलॉइड बन जायेंगे।
(D) ये ऋणावेशित कोलॉइड बन जायेंगे।

Sol. Positive and negative sol will precipitate each other.

हल. धनात्मक और ऋणात्मक सॉल एक दूसरे को अवक्षेपित करेंगे।

19. Which of the following are incorrect statements ?

(A) Hardy Schulz rule is related to coagulation
(B) Brownian movement and Tyndall effect are the characteristic of colloids.
(C*) In gel, the liquid is dispersed in liquid
(D*) Higher the gold number, more is the protective power of lyophilic sols.
निम्न में से कौनसा कथन गलत है ?
(A) हार्डी शुल्जे नियम स्कंदन से सम्बन्धित है।
(B) ब्राउनियन गति व टिण्डल प्रभाव कोलॉइड के अभिलाखणिक गुण है।
(C*) जैल में द्रव, द्रव में परिष्कृत होता है।

(D*) स्वर्ण संख्या का मान जितना अधिक होगा द्रवस्नेही सॉल की संरक्षी क्षमता उतनी ही अधिक होगी।

Sol. Gel is liquid in solid dispersion.

हल. ठोस परिस्थिति में द्रव की उपस्थिति को जैल कहते हैं।

20. Which of the following sols is positively charged?

(A) Arsenious sulphide

(B*) Aluminium hydroxide

(C*) Ferric hydroxide

(D*) Silver iodide in silver nitrate solution

निम्न में से कौनसा सॉल धनावेशित होता है ?

(A) आर्सेनियस सल्फाइड

(B*) एल्युमिनियम हाइड्रॉक्साइड

(C*) फेरिक हाइड्रॉक्साइड

(D*) सिल्वर नाइट्रेट विलयन में सिल्वर आयोडाइड

Sol. As_2S_3 is negatively charged. (As_2S_3 ऋणावेशित होता है।)

PART - IV : COMPREHENSION

भाग - IV : अनुच्छेद (COMPREHENSION)

Read the following passage carefully and answer the questions.

निम्न अनुच्छेद को ध्यानपूर्वक पढ़िये तथा प्रश्नों के उत्तर दीजिए।

Comprehension # 1

Many lyophilic sols and few lyophobic sols when coagulated under some special conditions changes into semi rigid mass, enclosing whole amount of liquid within itself, it is called gel and the process is called gelation. Gelatin Agar-agar, gum-Arabic can be converted into gels by cooling them under moderate concentration conditions. Hydrophobic sols like silicic acid. $\text{Al}(\text{OH})_3$ are prepared by double decomposition and exchange of solvent method.

Types of Gel :

(i) **Elastic gel** : Those gel which have elastic properties.

Eg : Gelatin, Strach, Agar-Agar etc.

(ii) **Non- elastic gel** : Those gel which are rigid.

Eg : Silica gel.

Properties of Gel :

1. **Syneresis/weeping of gel** : The spontaneous liberation of liquid from a gel is called syneresis or weeping of gels. It is reverse of swelling.

Eg : Gelatin, Agar-Agar show syneresis at low concentration while sillicic acid shows it at high concentration.

2. **Imbibition or swelling of gel** : When gel is kept in a suitable liquid (water) it absorb large volume of liquid. The phenomenon is called imbibition or swelling of gel.

3. **Thixotropic** : Some gels when shaken to form a sol, on keeping changes into gel are termed as thixotropic gel and phenomenon is called thixotropy.

Eg : Gelatin and silica liquify on shaking changing into corresponding sol and the sol on keeping changes back into gel.

अनुच्छेद # 1

जब कुछ विशेष परिस्थितियों में कई द्रव स्नेही सॉल व कुछ द्रव विरोधी सॉल को स्कन्दित किया जाता है तो यह अर्द्ध दृढ़ीय द्रव्यमान में परिवर्तित हो जाते हैं जिसमें द्रव की सम्पूर्ण मात्रा संग्रहित रहती है, इसे जैल कहा जाता है व इस प्रक्रम को जेलीकरण कहते हैं। जिलेटिन, आगार-आगार, गम् अरेबिक मध्यम सान्द्रित परिस्थितियों के अन्तर्गत ठण्डा करने पर जैल में परिवर्तित हो जाते हैं। जल विरोधी सॉल जैसे कि सिलिसिक अम्ल, $\text{Al}(\text{OH})_3$ की द्विविघटन व विलायक विनियम विधि का प्रयोग करके बनाये जाते हैं।

जैल के प्रकार :

(i) **प्रत्यास्थ जैल** : वह जैल जिनके प्रत्यास्थ गुण होते हैं।

उदा. जिलेटिन, स्टार्च, आगार-आगार इत्यादि।

(ii) **अप्रत्यास्थ जैल** : वह जैल जो दृढ़ होते हैं।

उदा. सिलिका जैल

जैल के गुणधर्म :

- जैल का रिसना या जैल का रोना :** एक जैल से द्रव का स्वतः मुक्त होना जैल का रिसना कहलाता है। यह फूलने (swelling) के विपरीत प्रक्रम होता है।
उदा. जिलेटिन, आगार-आगार निम्नतर सान्द्रता पर रिसना दर्शाती है जबकि सिलिसिक अम्ल इसे उच्च सान्द्रता पर दर्शाता है।
- जैल का अन्तःचूषण (Imbibition) अथवा फूलना :** जब जैल को उपयुक्त द्रव (जल) में रखा जाता है यह द्रव का बड़ा आयतन अवशोषित कर लेता है। तब इसे जैल का फूलना कहते हैं।
- कम्पानुवर्तिता :** कुछ जैल हिलाने पर सॉल में परिवर्तित हो जाते हैं तथा स्थिर छोड़ने पर यह जैल में परिवर्तित हो जाते हैं। इन्हें थाइक्सोट्रॉपिक जैल कहते हैं तथा यह परिघटना थाइक्सोट्रॉपी कहलाती है।
उदा. जिलेटिन व सिलिका हिलाने पर द्रवित हो जाती है व संगत सॉल में परिवर्तित हो जाती है तथा स्थिर छोड़ने पर सॉल पुनः जैल में परिवर्तित हो जाते हैं।

- Which of the following is used to adsorb water ?
(A*) Silica gel (B) Calcium acetate (C) Hair gel (D) Cheese
जल को अधिशोषित करने के लिए निम्न को प्रयुक्त करते हैं—
(A*) सिलिका जैल (B) कैल्सियम एसीटेट (C) हेयर जैल (D) पनीर

Sol. Silica gel is used to adsorb water.

जल को अधिशोषित करने के लिए सिलिका जैल का उपयोग किया जाता है।

- The process of imbibing water when elastic gel are placed in water is called :
(A*) imbibition (B) syneresis (C) coagulation (D) thixotropy
प्रत्यास्थ जैल को जल में रखने पर जैल द्वारा जल का अवशोषण कहलाता है :
(A*) अन्तःचूषण (B) रिसना (C) स्कंदन (D) कम्पानुवर्तिता

Sol. The process of imbibing water when elastic gel are placed in water is called as imbibition.
प्रत्यास्थ जैल को जल में रखने पर जैल द्वारा जल का अवशोषण अन्तः चूषण कहलाता है।

- Some types of gels like gelatin and silica liquify on shaking thereby changing into sols. The sols on standing change back into gels. This process is known as
(A) syneresis (B*) thixotropy
(C) double decomposition (D) peptization
जिलेटिन व सिलिका जैसे प्रकार के कुछ जैल हिलाने पर द्रवीकृत हो जाते हैं व फिर सॉल में बदल जाते हैं। इन सॉल को रखे रहने पर पुनः जैल में बदल जाता है। यह प्रक्रम निम्न प्रकार से जाना जाता है।
(A) जैल का रिसाव (B*) कंपानुवर्तिता (thixotropy)
(C) द्विविघटन (D) पेप्टीकरण

Sol. Interconversion of sol and gel is known as thixotropy.

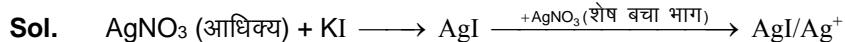
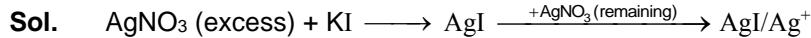
सॉल एवं जैल के अन्तर्परिवर्तन को कम्पानुवर्तिता कहते हैं।

Comprehension # 2

The clouds consist of charged particles of water dispersed in air. Some of them are +vely charged, others are -vely charged. When +vely charged clouds come closer they cause lightening and thundering whereas when +ve and -ve charged colloids come closer they cause heavy rain by aggregation of minute particles. It is possible to cause artificial rain by throwing electrified sand or silver iodide from an aeroplane and thus coagulating the mist hanging in air.

Smoke screen is a cloud of smoke used to hide military, naval police etc. It consists of fine particles of TiO_2 .

अनुच्छेद # 2



जल के आवेशित कण एवं वायु (परिक्षेपण माध्यम) मिलकर बादल का निर्माण करते हैं। उनमें से कुछ धनावेशित होते हैं, अन्य ऋणावेशित होते हैं। जब धनावेशित बादल पास होते हैं तो वे चमकते व गरजते हैं। जबकि धनावेशित व ऋणावेशित कोलॉइड आपस में पास आकर कुछ सूक्ष्म कणों के एकत्रण द्वारा भारी बारिश होती है। एक हवाई जहाज से वैद्युत आवेशित मिट्टी अथवा सिल्वर आयोडाइड को फेंककर कृत्रिम वर्षा सम्भव हो पाती है तथा इस प्रकार वायु में धुंध का स्कंदन होता है।

धुएँ से बना पर्दा एक धुएँ का बादल है जो मिलिट्री को छुपाने के लिए प्रयोग किया जाता है, इसमें परिषिष्ट TiO_2 का चूर्ण होता है।

4. When excess of AgNO_3 is treated with KI solution, AgI forms
 (A*) +ve charged sol (B) -ve charged sol (C) neutral sol (D) true solution

जब KI विलयन के साथ AgNO_3 के आधिक्य को उपचारित किया जाता है तो AgI

(A*) +ve आवेशित सॉल बनाता है। (B) -ve आवेशित सॉल बनाता है।
 (C) उदासीन सॉल बनाता है। (D) वास्तविक विलयन बनाता है।

5. AgI helps in artificial rain because :
 (A) it helps in ionisation of water (B) it helps in dispersion process
 (C*) it helps in coagulation (D) all of them
 AgI कृत्रिम वर्षा में सहायक है क्योंकि
 (A) यह जल के आयनीकरण में सहायता करता है (B) यह परिषेपण प्रक्रम में सहायता करता है
 (C*) यह रक्कंदन प्रक्रम में सहायता करता है (D) उपरोक्त सभी

Sol. AgI coagulates mist hanging in air.
 AgI वायु में उपस्थित धुंध को स्कन्दित कर देता है।

6. Smoke screens consist of
 (A*) fine particles of TiO_2 dispersed in air by aeroplanes
 (B) fine particles of AgI dispersed in air by aeroplanes
 (C) fine particles of Al_2O_3 dispersed in air by aeroplanes
 (D) None of these
 धुएँ से बने पर्दे में
 (A*) हवाई जहाज द्वारा वायु में TiO_2 के सूक्ष्म कणों को परिषिष्ट किया जाता है।
 (B) हवाई जहाज द्वारा वायु में AgI के सूक्ष्म कणों को परिषिष्ट किया जाता है।
 (C) हवाई जहाज द्वारा वायु में Al_2O_3 के सूक्ष्म कणों को परिषिष्ट किया जाता है।
 (D) इनमें से कोई नहीं

Sol. Smoke screen is cloud of smoke. It consists of fine particles of TiO_2 .
 धुएँ से बना पर्दा धुएँ का अभ्र होता है। यह TiO_2 के सूक्ष्म कणों से मिलकर बना होता है।

Comprehension # 3

Answer Q.7, Q.8 and Q.9 by appropriately matching the information given in the three columns of the following table.

Column-1		Column-2		Column-3	
(I)	Positively charged colloid	(i)	Can be coagulated by adding metal sulphide sol	(P)	During electrophoresis coagulation will take place at anode
(II)	Negatively charged colloid	(ii)	Can be coagulated by adding metal oxide sol	(Q)	During electro-osmosis level of dispersion medium will increase on anode side.
(III)	Can be prepared by Bredig's Arc method	(iii)	Coagulation value of $\text{Na}_2\text{SO}_4 > \text{MgCl}_2$ for this colloid	(R)	During Electro-phoresis coagulation will take place at cathode.
(IV)	Can be prepared by peptisation	(iv)	Coagulating power of $\text{MgSO}_4 > \text{NaCl}$ for this colloid.	(S)	During electro-osmosis level of dispersion medium will increase on cathode side.

अनुच्छेद # 3

नीचे दी गयी टेबल के तीन कालमों में उपलब्ध सूचना का उपयुक्त ढंग से सुमेल कर प्रश्नों Q.7, Q.8 और Q.9 के उत्तर दीजिये।

कॉलम-1		कॉलम-2		कॉलम-3	
(I)	धनावेशित कॉलोइड	(i)	धातु सल्फाइड सॉल को मिलाने से स्कंदित हो सकता है।	(P)	वैद्युत-कण संचलन के दौरान स्कंदन एनोड पर होगा।
(II)	ऋणावेशित कॉलोइड	(ii)	धातु ऑक्साइड सॉल को मिलाने से स्कंदित हो सकता है।	(Q)	वैद्युत-परासरण के दौरान परिक्षेपण माध्यम का स्तर एनोड की ओर बढ़ेगा।
(III)	ब्रेडिंग आर्क विधि से बनाया जा सकता है।	(iii)	इस कॉलोइड के लिए स्कंदन मान $\text{Na}_2\text{SO}_4 > \text{MgCl}_2$	(R)	वैद्युत-कण संचलन के दौरान स्कंदन कैथोड पर होगा।
(IV)	पेटीकरण से बनाया जा सकता है।	(iv)	इस कॉलोइड के लिए स्कंदन मान $\text{MgSO}_4 > \text{NaCl}$	(S)	वैद्युत-परासरण के दौरान परिक्षेपण माध्यम का स्तर कैथोड की ओर बढ़ेगा।

Exercise-3

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

भाग - I : JEE (ADVANCED) / IIT-JEE (पिछले वर्षों) के प्रश्न

* Marked Questions are having more than one correct option.

* चिन्हित प्रश्न एक से अधिक सही विकल्प वाले प्रश्न है।

1. Rate of physisorption increases with [JEE 2003, 3/60]
 (A*) decrease in temperature
 (C) decrease in pressure
 भौतिक अधिशोषण की दर बढ़ती है :
 (A*) तापमान घटने के साथ
 (C) दाब घटने के साथ
 (B) increase in temperature
 (D) decrease in surface area
 (B) तापमान बढ़ने के साथ
 (D) पृष्ठीय क्षेत्रफल घटने के साथ

Sol. Physical adsorption is exothermic process so its rate decreases with increase in temperature.
 हल. भौतिक अधिशोषण ऊष्माक्षेपी प्रक्रम है अतः तापमान में कमी के साथ इसकी दर बढ़ती है।

2. Adsorption of gases on solid surface is generally exothermic because [JEE 2004, 3/84]
 (A) enthalpy is positive
 (B*) entropy decreases
 (C) entropy increases
 (D) free energy increases
 ठोस सतह पर गैसों का अधिशोषण सामान्यतः ऊष्माक्षेपी होता है, क्योंकि [JEE 2004, 3/84]
 (A) एन्थैल्पी धनात्मक है (B*) एन्ट्रोपी घटती है (C) एन्ट्रोपी बढ़ती है (D) मुक्त ऊर्जा बढ़ती है

Sol. In adsorption there is bond formation between the gases and solid surface which decreases the entropy so to make it spontaneous the enthalpy change must be negative.

Sol. गैसों के अधिशोषण में ठोस सतह एवं गैस के बीच रासायनिक बंध बनता है। जिसके कारण एन्ट्रोपी घटती है।

3. Lyophilic sols are
 (A) Irreversible sols
 (C) Coagulated by adding electrolytes

(B) They are prepared from inorganic compound
 (D*) Self-stabilizing

[JEE 2005, 3/84]

द्रवस्नेही सॉल है

[JEE 2005, 3/84]

(A) अनुक्रमणीय सॉल

(B) ये अकार्बनिक यौगिकों से बनाये जाते है

(C) विद्युत अपघट्य मिलाने पर स्कन्दित होते है

(D*) स्वतः स्थायी

Sol. In lyophilic sols the dispersed phase have great affinity (attraction) towards dispersion medium. So they are self stabilizing.

हल. द्रवस्नेही सॉल में परिक्षेपण प्रावरथा और परिक्षेपण माध्यम के बीच बहुत अधिक बंधुता (आकर्षण) होती है। अतः ये स्वतः स्थायी होते हैं।

4. Among the following, the surfactant that will form micelles in aqueous solution at the lowest molar concentration at ambient condition is :

[JEE 2008, 3/163]

निम्न में, वह पृष्ठ-सक्रियक (surfactant) जो सामान्य स्थिति में जलीय विलयन में न्यूनतम मोलर सान्द्रता पर मिसेल (micelles) बनायेगा, है :

(A*) $\text{CH}_3(\text{CH}_2)_{15}\text{N}^+(\text{CH}_3)_3\text{Br}^-$ (B) $\text{CH}_3(\text{CH}_2)_{11}\text{OSO}_3^-\text{Na}^+$ (C) $\text{CH}_3(\text{CH}_2)_6\text{COO}^-\text{Na}^+$ (D) $\text{CH}_3(\text{CH}_2)_{11}\text{N}^+(\text{CH}_3)_3\text{Br}^-$

[JEE 2008, 3/163]

Sol. Longer the hydrophobic part of the molecule easy will be the formation of micelle. (Longest hydrocarbon chain)

हल. द्रवरोधी भाग जितना बड़ा होगा मिसेल का निर्माण उतना ही सरल होगा। (लम्बी हाइड्रोकार्बन श्रृंखला)

5. Among the electrolytes Na_2SO_4 , CaCl_2 , $\text{Al}_2(\text{SO}_4)_3$ and NH_4Cl , the most effective coagulating agent for Sb_2S_3 sol is :

[JEE 2009, 3/160]

विद्युत-अपघट्यों Na_2SO_4 , CaCl_2 , $\text{Al}_2(\text{SO}_4)_3$ और NH_4Cl में से Sb_2S_3 सॉल (sol) के लिए सबसे अधिक प्रभावकारी स्कंदन कर्मक (coagulating agent) है :

[JEE 2009, 3/160]

(A) Na_2SO_4 (B) CaCl_2 (C*) $\text{Al}_2(\text{SO}_4)_3$ (D) NH_4Cl

Sol. Most effective coagulating agent for Sb_2S_3 is $\text{Al}_2(\text{SO}_4)_3$ because of high charge.

हल. Sb_2S_3 (ऋणावेशित सॉल) के लिए सबसे प्रभावी स्कंदन कारक $\text{Al}_2(\text{SO}_4)_3$ है क्योंकि धनायन पर आवेश सर्वाधिक हैं।

6. Silver (atomic weight = 108 gm mol⁻¹) has a density of 10.5 gm cm⁻³. The number of silver atoms on a surface of area 10^{-12} m² can be expressed in scientific notation as $y \times 10^x$. The value of x is :

[JEE 2010, 3/163]

सिल्वर (परमाणु भार = 108 ग्राम मोल⁻¹) काधनत्व 10.5 ग्राम cm⁻³ है। 10^{-12} m² पृष्ठीय क्षेत्रफल पर सिल्वर परमाणुओं की संख्या वैज्ञानिक संकेतन में $y \times 10^x$ द्वारा व्यक्त की जा सकती है। x का मूल्य है :

[JEE 2010, 3/163]

Ans. 7

Sol. Volume of one mole of silver atoms = $\frac{108}{10.5}$ cm³/mole

$$\text{volume of one silver atom} = \frac{108}{10.5} \times \frac{1}{6.022 \times 10^{23}} \text{ cm}^3$$

$$\text{so, } \frac{4}{3} \pi R^3 = \frac{108}{10.5} \times \frac{1}{6.022 \times 10^{23}} = 1.708 \times 10^{-23} \quad [\text{neglecting the void space}]$$

$$R^3 = 0.407 \times 10^{-23} \text{ cm}^3$$

$$R^3 = 0.407 \times 10^{-29} \text{ m}^3$$

Area of each silver atom

$$\pi R^2 = \pi \times (0.407 \times 10^{-29} \text{ m}^3)^{2/3}$$

$$\text{so, number of silver atoms in given area.} = \frac{10^{-12}}{(0.407 \times 10^{-29} \text{ m}^3)^{2/3}} = \frac{10^8}{(\pi \times 2)} = 1.6 \times 10^7 = y \times 10^x$$

$$x = 7$$

Sol. 1 मोल Ag परमाणुओं का आयतन = $\frac{108}{10.5}$ cm³/mole

$$1 \text{ Ag परमाणु का आयतन} = \frac{108}{10.5} \times \frac{1}{6.022 \times 10^{23}} \text{ cm}^3$$

$$\text{अतः, } \frac{4}{3} \pi R^3 = \frac{108}{10.5} \times \frac{1}{6.022 \times 10^{23}} = 1.708 \times 10^{-23} \quad [\text{निविड़ रिकितयों को नगण्य मानते हुए}]$$

$$R^3 = 0.407 \times 10^{-23} \text{ cm}^3$$

$$R^3 = 0.407 \times 10^{-29} \text{ m}^3$$

$$\text{प्रत्येक Ag परमाणु का क्षेत्रफल } \pi R^2 = \pi \times (0.407 \times 10^{-29} \text{ m}^3)^{2/3}$$

$$\text{अतः, दिये गए क्षेत्रफल में Ag परमाणुओं की संख्या} = \frac{10^{-12}}{(0.407 \times 10^{-29} \text{ m}^3)^{2/3}} = \frac{10^8}{(\pi \times 2)} = 1.6 \times 10^7 = y \times 10^x$$

$$x = 7$$

7.* The correct statement(s) pertaining to the adsorption of a gas on a solid surface is (are)

[JEE 2011, 4/180]

(A*) Adsorption is always exothermic

(B*) Physisorption may transform into chemisorption at high temperature

(C) Physisorption increases with increasing temperature but chemisorption decreases with increasing temperature

(D*) Chemisorption is more exothermic than physisorption, however it is very slow due to higher energy of activation.

धातु-पृष्ठ पर होने वाले गैस के अधिशोषण के लिए सत्य कथन हैं (हैं)

[JEE 2011, 4/180]

(A*) अधिशोषण सर्वदा उष्माक्षेपी है।

(B*) भौतिक अधिशोषण उच्च ताप पर रासायनिक अधिशोषण में परिवर्तित हो सकता है।

(C) भौतिक अधिशोषण ताप बढ़ने के साथ बढ़ता है परन्तु रासायनिक अधिशोषण ताप बढ़ने के साथ घटता है।

(D*) भौतिक अधिशोषण की अपेक्षा रासायनिक अधिशोषण अधिक उष्माक्षेपी है क्योंकि यह अधिक सक्रियण ऊर्जा के कारण मन्द गति से होता है।

Sol. (A) $\Delta H = -ve$ for adsorption

(B) fact

(D) chemical bonds are stronger than vander waal's forces so chemical adsorption is more exothermic.

Sol. (A) $\Delta H = -ve$ अधिशोषण के लिए

(B) तथ्य

(D) रासायनिक बंध वान्डरवॉल बंधों की अपेक्षा प्रबल होते हैं इसलिए रासायनिक अधिशोषण अधिक ऊर्जापेक्षी होगा।

8.* Choose the correct reason(s) for the stability of the **lyophobic** colloidal particles. [JEE 2012, 4/168]

(A*) Preferential adsorption of ions on their surface from the solution.

(B) Preferential adsorption of solvent on their surface from the solution.

(C) Attraction between different particles having opposite charges on their surface.

(D*) Potential difference between the fixed layer and the diffused layer of opposite charges around the colloidal particles.

द्रवविरासी कोलॉइडल कण (**lyophobic** colloidal particles) की स्थिरता (stability) के सही कारण चुनिए।

[JEE 2012, 4/168]

(A*) इनके पृष्ठ पर आयनों का विलयन में वर्णात्मक (preferential) अधिशोषण होना।

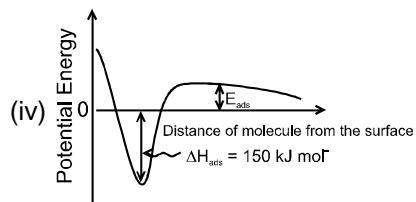
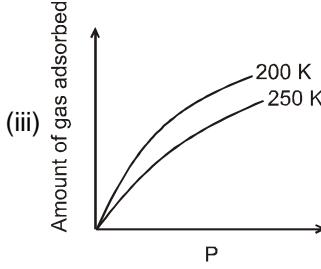
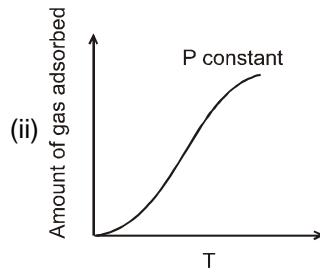
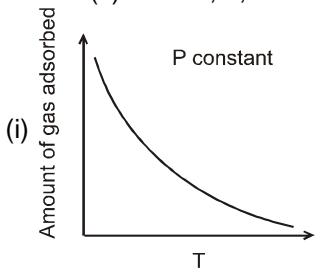
(B) इनके पृष्ठ पर विलायक का विलयन में वर्णात्मक अधिशोषण होना।

(C) इनके पृष्ठ कणों के पृष्ठ पर विपरीत आवेशों के बीच आकर्षण होना।

(D*) इनके चारों ओर शिर परत और विसरित परत के बीच विपरीत आवेशों के कारण विभवान्तर होना।

Sol. (A) due to preferential adsorption of common ions

(C) due to repulsion not due to attraction





(D) The layer of oppositely charged particles around any colloidal particles will decrease the potential energy of system as a whole.

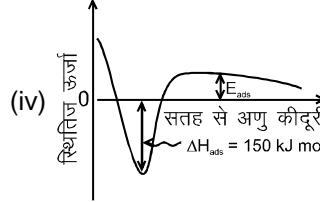
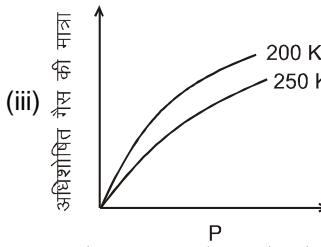
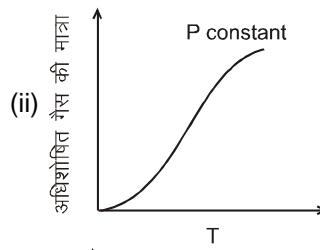
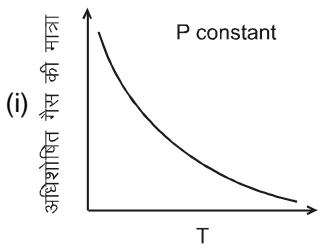
Sol. (A) सम आयनों के वर्णात्मक अधिशोषण के कारण

(C) प्रतिकर्षण के कारण ना कि आकर्षण के कारण

(D) किसी भी कोलॉइडल कण के चारों ओर विपरीत आवेशित कणों की परत, सम्पर्ण निकाय की स्थितिज ऊर्जा में कमी करती है।

9.* The given graph / data I, II, III and IV represent general trends observed for different physisorption and chemisorption processes under mild conditions of temperature and pressure. Which of the following choice (s) about I, II, III and IV is (are) correct. [JEE 2012, 4/168]

(A*) I is physisorption and II is chemisorption





(C*) IV is chemisorption and II is chemisorption

दिए हुए I, II, III और IV रेखाचित्र (data), मंद तापक्रम व दाब (mild temperature and pressure) पर, विभिन्न भौतिक अधिशोषण व रासायनिक अधिशोषण (प्रक्रमों) की सामान्य प्रवृत्ति दिखाते हैं। निम्नलिखित में से I, II, III और IV के संदर्भ में कौन विकल्प सही है हैं ?

(B) I is physisorption and III is chemisorption

(D) IV is chemisorption and III is chemisorption

[JEE 2012, 4/168]

(A*) I भौतिक अधिशोषण है और II रासायनिक अधिशोषण है

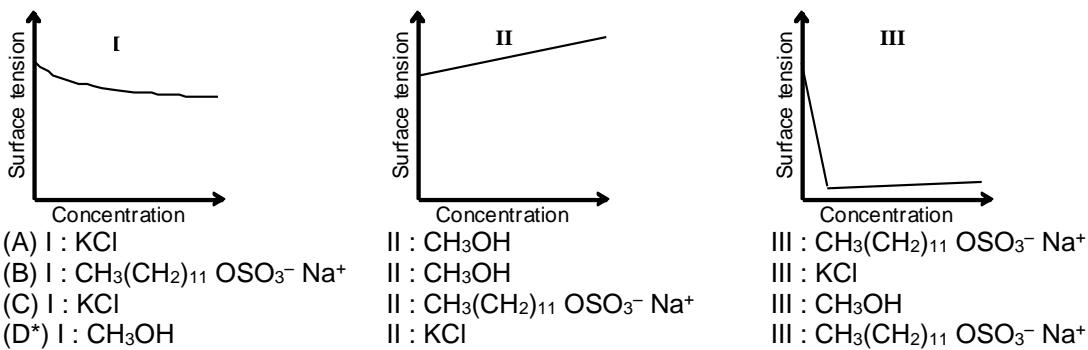
(B) I भौतिक अधिशोषण है और III रासायनिक अधिशोषण है

(C*) IV रासायनिक अधिशोषण है और II रासायनिक अधिशोषण है

(D) IV रासायनिक अधिशोषण है और III रासायनिक अधिशोषण है

Sol.

In physisorption on increasing temperature at constant pressure, adsorption decreases while in chemical adsorption on increasing temperature due to requirement of activation energy adsorption will increase at same pressure. So, I is physisorption while II is chemisorption.


III is physical adsorption as on increasing temperature, extent of adsorption is decreasing.

IV is representing enthalpy change (which is high) during chemical adsorption (due to bond formation) So, is valid for chemical adsorption. So, answer is (A) and (C)

हल

भौतिक अधिशोषण में नियत दाब पर ताप में वृद्धि के साथ अधिशोषण में कमी होती है जबकि रासायनिक अधिशोषण में ताप में वृद्धि के साथ सक्रियता की आवश्यकता के कारण समान दाब पर अधिशोषण में वृद्धि होगी। अतः I भौतिक अधिशोषण है जबकि II रासायनिक अधिशोषण है।

Sol. Impurities affect surface tension appreciably. It is observed that impurities which tend to concentrate on surface of liquids, compared to its bulk lower the surface tension. Substance like detergents, soaps ($\text{CH}_3(\text{CH}_2)_{11}\text{SO}_3^-\text{Na}^+$) decreases the surface tension sharply. Those like alcohol (eg. $-\text{CH}_3\text{OH}$, $\text{C}_2\text{H}_5\text{OH}$) lower the surface tension slightly. This can also be related to the fact that CH_3OH has smaller dielectric constant. Dielectric constant is directly proportional to surface tension. So, on adding CH_3OH in water, overall dielectric constant decreases and surface tension decreases.

Inorganic impurities present in bulk of a liquid such as KCl tend to increase the surface tension of water.

हल : आद्वियाँ पट तनाव पर उपुयक्त प्रभाव डालती हैं यह प्रेक्षित होता है कि आद्वियाँ जो बल्क की अपेक्षा द्रवों की सतह पर सान्द्रित होती हैं तो पट तनाव को कम कर देती हैं। पदार्थ जैसे अपमार्जक, सोप ($\text{CH}_3(\text{CH}_2)_{11}\text{SO}_3^-\text{Na}^+$) पट तनाव को तेजी से घटाती है। एल्कोहॉल (उदाहरण $-\text{CH}_3\text{OH}$, $\text{C}_2\text{H}_5\text{OH}$) पट तनाव को थोड़ा कम करती है। इसको इस तरह भी कहा जा सकता है CH_3OH का परावैद्युत स्थरांक कम है। परावैद्युत स्थरांक पट तनाव के समानुपाती होता है। इसलिए जल में CH_3OH मिलाने पर परावैद्युत स्थरांक घटता है तथा पट तनाव घटता है। अकार्बनिक आद्वियाँ द्रव जैसे KCl के बल्क में उपस्थिति होती हैं तो जल के पट तनाव को बढ़ाती है।

13.* The correct statement(s) about surface properties is(are) [JEE(Advanced)-2017, 4/122]

(A*) The critical temperatures of ethane and nitrogen are 563 K and 126 K, respectively. The adsorption of ethane will be more than that of nitrogen of same amount of activated charcoal at a given temperature.

(B) Cloud is an emulsion type of colloid in which liquid is dispersed phase and gas is dispersion medium.

(C*) Adsorption is accompanied by decrease in enthalpy and decrease in entropy of the system.

(D) Brownian motion of colloidal particles does not depend on the size of the particles but depends on viscosity of the solution.

पृष्ठ गुणों के बारे में सही कथन है (हैं)

[JEE(Advanced)-2017, 4/122]

(A*) एथेन और नाइट्रोजन के क्रांतिक तापमान (critical temperatures) क्रमशः 563 K और 126 K हैं। एक दिये गये तापमान पर सक्रियत चारकोल की समान मात्रा पर एथेन का अवशोषण नाइट्रोजन की अपेक्षा अधिक होगा

(B) बादल एक इमल्शन प्रकार का कोलाइड है जिसमें द्रव परिस्थिति प्रावस्था (dispersed phase) है और गैस परिस्थिति माध्यम (dispersion medium) है।

(C*) अधिशोषण (Adsorption), निकाय की एन्ट्रॉपी घटने और एन्थेल्पी घटने के साथ होता है।

(D) कोलाइडी कणों की ब्राउनी गति कणों के साइज पर निर्भर नहीं होती है। परन्तु विलयन की श्यानता (viscosity) पर निर्भर करती है।

Sol. \Rightarrow Higher the critical temperature, higher will be extent of adsorption.

\Rightarrow Cloud is an aerosol, emulsions are liquid-liquid colloidal system.

\Rightarrow For adsorption $\Delta H \Rightarrow$ negative : $\Delta S \Rightarrow$ negative

\Rightarrow Brownian movement of colloidal particles depends on size of particles.

हल : \Rightarrow उच्च क्रांतिक ताप होने पर, अधिशोषण की परास भी अधिक होगी।

\Rightarrow बादल एक ऐरोसॉल है, पायस एक द्रव-द्रव कोलाइड तंत्र है।

\Rightarrow अधिशोषण के लिए $\Delta H \Rightarrow$ ऋणात्मक : $\Delta S \Rightarrow$ ऋणात्मक

\Rightarrow कोलाइड कणों की ब्राउनीयन गति कणों के आकार पर निर्भर करती है।

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)**भाग - II : JEE (MAIN) / AIEEE (पिछले वर्षों) के प्रश्न****JEE(MAIN) OFFLINE PROBLEMS**

1. Which one of the following characteristics is not correct for physical adsorption? [AIEEE 2003, 3/225]

(1) Adsorption on solids is reversible
 (2*) Adsorption increases with increase in temperature
 (3) Adsorption is spontaneous
 (4) Both enthalpy and entropy of adsorption are negative.

निम्न में से कौनसा लाक्षणिक गुण भौतिक अधिशोषण के लिए सत्य नहीं है –

[AIEEE 2003, 3/225]

(1) ठोसों पर अधिशोषण उत्क्रमणीय होता है।
 (2*) ताप बढ़ाने के साथ अधिशोषण बढ़ता है।
 (3) अधिशोषण स्वतः होता है।
 (4) अधिशोषण की एन्थैल्पी व एन्ट्रॉपी दोनों ऋणात्मक होती है।

Sol. Since the physical adsorption process is exothermic, the physical adsorption occurs readily at low temperature and decreases with increasing temperature. (Le Chatelier's principle).

हल. अतः भौतिक अधिशोषण एक ऊष्माक्षेपी प्रक्रम है इसलिए भौतिक अधिशोषण निम्न ताप पर शीघ्रतापूर्वक होता है तथा ली-शातेलिए नियमानुसार, ताप बढ़ाने पर भौतिक अधिशोषण की दर घटेगी।

2. The disperse phase in colloidal iron (III) hydroxide and colloidal gold is positively and negatively charged, respectively. Which of the following statements is NOT correct? [AIEEE 2005, 3/225]

(1) Coagulation in both sols can be brought about by electrophoresis
 (2*) Mixing the sols has no effect
 (3) Sodium sulphate solution causes coagulation in both sols
 (4) Magnesium chloride solution coagulates, the gold sol more readily than the iron (III) hydroxide sol.

कोलॉइडी आयरन (III) हाइड्रॉक्साइड तथा कोलॉइडी गोल्ड में परिक्षित प्रावस्था क्रमशः धनावेशित व ऋणावेशित होती है।
 निम्न में से कौनसा वाक्य सही नहीं है ?

[AIEEE 2005, 3/225]

(1) दोनों सॉल में स्कंदन विद्युत कण संचलन द्वारा किया जाता है।
 (2*) सॉल को मिलाने पर कोई प्रभाव नहीं पड़ता है।
 (3) सोडियम सल्फेट विलयन दोनों सॉल में स्कंदन उत्पन्न करता है।
 (4) आयरन (III) हाइड्रॉक्साइड सॉल की अपेक्षा मैग्नीशियम क्लोराइड विलयन, गोल्ड सॉल को शीघ्रता से स्कन्दित करता है।

Sol. On mixing, they will coagulate each other being +ve and -ve charged.

हल. मिलाने पर, यह धनात्मक तथा ऋणात्मक आवेश के रूप में एक-दूसरे के साथ स्कन्दित हो जायेगें।

3. The volume of colloidal particle V_c as compared to the volume of a solute particle in a true solution V_s could be :

कोलॉइडी कण का आयतन V_c , वास्तविक विलयन में विलेय के कणों के आयतन V_s की तुलना में हो सकता है।

[AIEEE 2005, 3/225]

(1) ~ 1 (2) $\sim 10^{23}$ (3) $\sim 10^{-3}$ (4*) $\sim 10^3$

Sol. For true solution the diameter range is 1 to 10 Å and for colloidal solution diameter range is 10 to 10,000 Å.

$$\frac{V_c}{V_s} = \frac{(4/3)\pi r_c^3}{(4/3)\pi r_s^3} = \left(\frac{r_c}{r_s}\right)^3 \quad \text{Ratio of diameters} = (10/1)^3 = 10^3 \quad V_c / V_s = 10^3.$$

हल. वास्तविक विलयन के लिए व्यास की परास 1 से 10 Å तक होती है तथा कोलॉइडल विलयन के लिए व्यास की परास 10 से 10,000 Å होती है।

$$\frac{V_c}{V_s} = \frac{(4/3)\pi r_c^3}{(4/3)\pi r_s^3} = \left(\frac{r_c}{r_s}\right)^3 \quad \text{व्यासों का अनुपात} = (10/1)^3 = 10^3 \quad V_c / V_s = 10^3.$$

4. In Langmuir's model of adsorption of a gas on a solid surface : [AIEEE 2006, 3/165]

- the rate of dissociation of adsorbed molecules from the surface does not depend on the surface covered
- the adsorption at a single site on the surface may involve multiple molecules at the same time
- the mass of gas striking a given area of surface is proportional to the pressure of the gas
- the mass of gas striking a given area of surface is independent of the pressure of the gas

किसी गैस के ठोस की सतह पर अधिशोषण के लैंगम्यूर सिद्धांत (Langmuir theory) के अनुसार :

[AIEEE 2006, 3/165]

- अधिशोषित अणुओं की सतह से वियोजन की दर ढकी हुई सतह पर निर्भर नहीं करती है।
- सतह पर एकल स्थान पर होने वाला अधिशोषण बहुत सारे अणुओं को एक ही समय शामिल कर सकता है।
- सतह के नियत दिए गए क्षेत्रफल पर टकराने वाली गैस की मात्रा गैस के दाब के अनुक्रमानुपाती होती है।
- सतह के नियत दिए गए क्षेत्रफल पर टकराने वाली गैस की मात्रा गैस के दाब पर निर्भर नहीं करती है।

Sol. The adsorption of a gas is directly proportional to the pressure of gas.

हल. गैस के अधिशोषण की दर गैस के दाब के समानुपाती होती है।

5. Gold numbers of protective colloids A, B, C and D are 0.50, 0.01, 0.10 and 0.005, respectively. The correct order of their protective powers is [AIEEE 2008, 3/105]

रक्षी कोलॉइडों A, B, C तथा D के स्वर्णक (gold numbers) क्रमशः 0.50, 0.01, 0.10 तथा 0.005 है। रक्षी क्षमताओं का सही क्रम है :

- $C < B < D < A$
- $A < C < B < D$
- $B < D < A < C$
- $D < A < C < B$

[AIEEE 2008, 3/105]

Sol. Higher the gold number, lesser will be the protective power of colloid.

हल. किसी कोलॉइड की स्वर्ण संख्या जितनी अधिक होगी, उसकी रक्षण क्षमता उतनी ही कम होगी।

6. Which of the following statements is incorrect regarding physiosorptions ? [AIEEE 2009, 4/144]

- More easily liquefiable gases are adsorbed readily.
- Under high pressure it results into multi molecular layer on adsorbent surface.
- Enthalpy of adsorption ($\Delta H_{\text{adsorption}}$) is low and positive.
- It occurs because of van der Waal's forces.

भौतिक अधिशोषण के सम्बन्ध में दिये निम्न कथनों में कौन असत्य है ?

[AIEEE 2009, 4/144]

- अधिक सरलता से द्रवीभूत होने वाली गैसें सरलता से अधिशोषित होती है।
- उच्च दाब पर अधिशोषक सतह पर बहुआणिक परत तह बन जाती है।
- अधिशोषण की एन्थैल्पी ($\Delta H_{\text{अधिशोषण}}$) निम्न और धनात्मक होती है।
- यह वाण्डरवाल बलों के कारण होता है।

Sol. Since adsorption is exothermic process so ΔH of adsorption is always negative.

हल. चूंकि अधिशोषण एक ऊष्माक्षेपी प्रक्रम है अतः अधिशोषण के लिए ΔH हमेशा ऋणात्मक होता है।

7. According to Freundlich adsorption isotherm which of the following is correct? [AIEEE 2012, 4/120]

$$(1) \frac{X}{m} \propto p^0 \quad (2) \frac{X}{m} \propto p^1$$

$$(3) \frac{X}{m} \propto p^{1/n}$$

(4*) All the above are correct for different ranges of pressure

फ्रेन्डलिच अधिशोषण समतापी के अनुसार निम्न में से क्या सत्य है?

[AIEEE 2012, 4/120]

$$(1) \frac{X}{m} \propto p^0 \quad (2) \frac{X}{m} \propto p^1$$

$$(3) \frac{X}{m} \propto p^{1/n}$$

(4*) दाब की विभिन्न परास के लिये उपरोक्त सभी सही हैं।

Sol. $\frac{X}{m} \propto P^{1/n}$ where जहाँ $n \geq 1$

8. The coagulating power of electrolytes having ions Na^+ , Al^{3+} and Ba^{2+} for arsenic sulphide sol increases in the order :

[JEE(Main) 2013, 4/120]

आर्सेनिक सल्फाइड सॉल के लिये Na^+ , Al^{3+} और Ba^{2+} आयनों वाले विद्युत अपघटयों का स्कंदन बल निम्न क्रम में बढ़ता है :

[JEE(Main) 2013, 4/120]

$$(1) \text{Al}^{3+} < \text{Ba}^{2+} < \text{Na}^+ \quad (2*) \text{Na}^+ < \text{Ba}^{2+} < \text{Al}^{3+} \quad (3) \text{Ba}^{2+} < \text{Na}^+ < \text{Al}^{3+} \quad (4) \text{Al}^{3+} < \text{Na}^+ < \text{Ba}^{2+}$$

Sol. According to Hardy Schulze rule, greater the charge on cation, greater is its coagulating power for negatively charged solution. So, order of coagulating power : $\text{Na}^+ < \text{Ba}^{2+} < \text{Al}^{3+}$.

हल. हार्डी शुल्जे नियम के अनुसार धनायन पर अधिक आवेश, किसी ऋणायन के लिए इसकी अधिक स्कंदन क्षमता को दर्शाता है। अतः स्कंदन क्षमता का क्रम निम्न है : $\text{Na}^+ < \text{Ba}^{2+} < \text{Al}^{3+}$

9. 3 gram of activated charcoal was added to 50 mL of acetic acid solution (0.06N) in a flask. After an hour it was filtered and the strength of the filtrate was found to be 0.042 N. The amount of acetic acid adsorbed (per gram of charcoal) is : [JEE(Main)-2015, 4/120]

एक फ्लास्क में 0.06 N एसिटिक अम्ल के 50 mL विलयन में 3 ग्राम सक्रियत काष्ठ कोयला मिलाया गया। एक घंटे के पश्चात उसे छाना गया और नियन्त्रित की प्रबलता 0.042 N पाई गई। अधिशोषित एसिटिक अम्ल की मात्रा (काष्ठ-कोयला के प्रति ग्राम पर) है :

$$(1*) 18 \text{ mg} \quad (2) 36 \text{ mg} \quad (3) 42 \text{ mg} \quad (4) 54 \text{ mg}$$

Sol. Initial mmoles of $\text{CH}_3\text{COOH} = 0.06 \times 50$

Final mmoles of $\text{CH}_3\text{COOH} = 0.042 \times 50$

Hence, mass of CH_3COOH adsorbed per gram of charcoal

$$= \frac{(0.06 - 0.042) \times 50 \times 10^{-3} \times 60 \times 10^3}{3} = 18 \text{ mg}$$

Sol. CH_3COOH के प्रारम्भिक मिली मोल = 0.06×50

CH_3COOH के अंतिम मिली मोल = 0.042×50

अतः काष्ठ कोयला के प्रति ग्राम अवशोषित CH_3COOH का द्रव्यमान

$$= \frac{(0.06 - 0.042) \times 50 \times 10^{-3} \times 60 \times 10^3}{3} = 18 \text{ mg}$$

10. For a linear plot of $\log(x/m)$ versus $\log p$ in a Freundlich adsorption isotherm, which of the following statements is correct? (k and n are constants) [JEE(Main)-2016, 4/120]

(1) $1/n$ appears as the intercept

(2*) Only $1/n$ appears as the slope.

(3) $\log(1/n)$ appears as the intercept.

(4) Both k and $1/n$ appear in the slope term.

फ्रॉयन्डलिक अधिशोषण समतापी वक्र में $\log(x/m)$ तथा $\log p$ के बीच खींच गये रेखीय लाइन के लिए निम्न में से कौन सा कथन सही है ? (k तथा n स्थिरांक हैं)

(1) $1/n$ इन्टरसेप्ट के रूप में आता है।

(2*) मात्र $1/n$ स्लोप के रूप में आता है।

(3) $\log(1/n)$ इन्टरसेप्ट के रूप में आता है।

(4) k तथा $1/n$ दोनों ही स्लोप पद में आते हैं।

Sol. According to the Freundlich adsorption isotherm

फ्रॉयन्डलिक (फ्रेंडलिच) अधिशोषण समतापी वक्र के अनुसार

$$\frac{x}{m} = kP^{1/n}$$

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log P$$

11. The Tyndall effect is observed only when following conditions are satisfied : [JEE(Main)-2017, 4/120]

(a) The diameter of the dispersed particles is much smaller than the wavelength of the light used.

(b) The diameter of the dispersed particles is not much smaller than the wavelength of the light used

(c) The refractive indices of the dispersed phase and dispersion medium are almost similar in magnitude.

(d) The refractive indices of the dispersed phase and dispersion medium differ greatly in magnitude.

$$(1*) (b) \text{ and } (d) \quad (2) (a) \text{ and } (c) \quad (3) (b) \text{ and } (c) \quad (4) (a) \text{ and } (d)$$

टिन्डल प्रभाव तभी दिखायी पड़ेगा जब निम्न शर्तें संतुष्ट होती हैं—

[JEE(Main)-2017, 4/120]

(a) परिक्षेपित कणों का व्यास, प्रयुक्त प्रकाश की तरंगदैर्घ्य की तुलना में बहुत छोटा हो।

(b) परिक्षेपित कणों का व्यास, प्रयुक्त प्रकाश की तरंगदैर्घ्य की तुलना में बहुत छोटा नहीं हो।

(c) परिक्षेपित प्रावस्था तथा परिक्षेपण माध्यम के अपवर्तनांक परिमाण लगभग एक जैसे हो।

(d) परिक्षेपित प्रावस्था तथा परिक्षेपण माध्यम के अपवर्तनांक परिमाण बहुत भिन्न हो।
 (1*) (b) तथा (d) (2) (a) तथा (c) (3) (b) तथा (c) (4) (a) तथा (d)

Sol. Theory based
 NCERT page : 139 (Surface chemistry)

Sol. सैद्धान्तिक
 NCERT page : 139 (पृष्ठ रसायन)

JEE(MAIN) ONLINE PROBLEMS

1. The following statements relate to the adsorption of gases on a solid surface. Identify the incorrect statement among them : **[JEE(Main) 2015 Online (10-04-15), 4/120]**

(1) On adsorption decrease in surface energy appears as heat
 (2) Enthalpy of adsorption is negative
 (3*) On adsorption, the residual forces on the surface are increased
 (4) Entropy of adsorption is negative

निम्न में से कौनसा कथन ठोस सतह पर गैस के अधिशोषण से सम्बन्धित है। इनमें से गलत कथन को पहचानिये—

[JEE(Main) 2015 Online (10-04-15), 4/120]

(1) अधिशोषण पर पृष्ठीय ऊर्जा में कमी ऊष्मा के रूप में होती है।
 (2) अधिशोषण की एन्थेल्पी ऋणात्मक होती है।
 (3*) अधिशोषण पर पृष्ठीय क्षेत्रफल पर अवशिष्ट बल बढ़ता है।
 (4) अधिशोषण की एन्ट्रोपी ऋणात्मक होती है।

Sol. Adsorption takes place due to the presence of residual forces on the surface. After adsorption, these are decreased.

अधिशोषण पृष्ठ पर अवशिष्ट बलों की उपस्थिति के कारण होता है। अधिशोषण के पश्चात् यह घटता है।

2. Under ambient conditions, which among the following surfactants will form micelles in aqueous solution at lowest molar concentration ? **[JEE(Main) 2015 Online (11-04-15), 4/120]**

उभय परिस्थितियों के अन्तर्गत निम्न में से कौनसा पृष्ठकारी निम्नतम मोलर सान्द्रता पर जलीय विलयन में मिसैल बनायेगा?

[JEE(Main) 2015 Online (11-04-15), 4/120]

(1) $\text{CH}_3-(\text{CH}_2)_8-\text{COO}^- \text{Na}^+$ (2) $\text{CH}_3(\text{CH}_2)_{11}\overset{\oplus}{\text{N}}(\text{CH}_3)_3\text{Br}^-$
 (3) $\text{CH}_3-(\text{CH}_2)_{13}-\text{OSO}_3^- \text{Na}^+$ (4*) $\text{CH}_3(\text{CH}_2)_{15}\overset{\oplus}{\text{N}}(\text{CH}_3)_3\text{Br}^-$

Sol. Longer hydrophobic chain, lesser CMC
 लम्बी जल विरोधी शृंखला, कम CMC.

3. The most appropriate method of making egg-albumin sol is: **[JEE(Main) 2016 Online (09-04-16), 4/120]**

(1) Keep the egg in boiling water for 10 minutes. After removing the shell, transfer the yellow part of the content to 100 mL of 5% w/V saline solution and homogenize with a mechanical shaker.
 (2*) Break an egg carefully and transfer the transparent part of the content to 100 mL of 5% w/V saline solution and stir well.
 (3) Keep the egg in boiling water for 10 minutes. After removing the shell, transfer the white part of the content to 100 mL of 5% w/V saline solution and homogenize with a mechanical shaker.
 (4) Break an egg carefully and transfer only the yellow part of the content to 100 mL of 5% w/V saline solution and stir well.

एग एल्बुमीन सॉल बनाने की सर्वाधिक उचित विधि है।

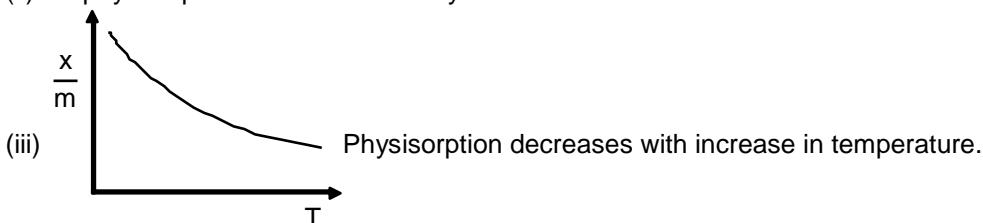
(1) एक (अण्डे) को 10 मिनट के लिए उबलते हुए पानी में रखते हैं। छिलके को हटाने के बाद अवयव के पीले भाग को 5% w/V लवणीय विलयन के 100 mL में स्थानान्तरित करते हैं तथा यांत्रिक विलोड़क (shaker) के साथ संमानी करते हैं।
 (2*) एग को ध्यानपूर्वक तोड़ते हैं तथा अवयव के परदर्शी भाग को 5% w/V लवणीय विलयन के 100 mL में स्थानान्तरित करते हैं। तथा अच्छे से मिलाते हैं।
 (3) एग को 10 मिनट के लिए रखते हैं। छिलक को हटाने के बाद अवयव के सफेद भाग को 5% w/V लवणीय विलयन के 100 mL में स्थानान्तरित करते हैं तथा यांत्रिक विलाइक के समांगी (homogenize) करते हैं

(4) एग को ध्यानपूर्वक तोड़ते हैं तथा अवयव के केवल पीले भाग को 5% w/V लवणीय विलयन के 100 mL में स्थानान्तरित करते हैं तथा अच्छे से मिलाते हैं।

Sol. Only the transparent part of egg has albumin.
एग का केवल पारदर्शी भाग एल्बुमिन रखता है।

4. A particular adsorption process has the following characteristics: (i) It arises due to vander Waals forces and (ii) it is reversible. Identify the correct statement that describes the above adsorption process:

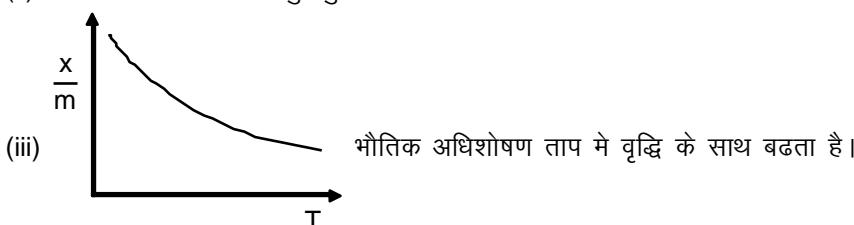
[JEE(Main) 2016 Online (09-04-16), 4/120]


- (1) Enthalpy of adsorption is greater than 100 kJ mol⁻¹.
- (2) Adsorption is monolayer.
- (3) Adsorption increases with increase in temperature.
- (4*) Energy of activation is low.

एक विशेष अधिशोषण प्रक्रम निम्न अभिलक्षण रखता है (i) इसमें वान्डरवॉल बल के कारण वृद्धि होती है (ii) यह उत्क्रमणीय है। सही कथन पहचानिए, जो उपरोक्त अधिशोषण प्रक्रम को परिभाषित करता है।

[JEE(Main) 2016 Online (09-04-16), 4/120]

- (1) अधिशोषण की एन्थैल्पी 100 kJ mol⁻¹ से अधिक होती है।
- (2) अधिशोषण एकलपरत है।
- (3) अधिशोषण ताप में वृद्धि के साथ बढ़ता है।
- (4*) सक्रियण ऊर्जा न्यून है।


Sol. Adsorption arises due to Vander waal forces & reversible, hence it should be physisorption (physical adsorption).
(i) Enthalpy of physisorption is low (20 – 40 kJ/mol)
(ii) In physisorption multimolecular layer form.

- (iv) Physisorption required number activation energy.
Hence answer is (4)

Sol. अधिशोषण में वान्डरवॉल बल के कारण वृद्धि होती है तथा उत्क्रमणीय होता है इसलिए यह भौतिक अधिशोषण होना चाहिए।

- (i) भौतिक अधिशोषण की एन्थैल्पी न्यून (20 – 40 kJ/mol) होती है।
- (ii) भौतिक अधिशोषण में बहुअनुक परतीय रूप होता है।

- (iv) भौतिक ऊर्जा को सक्रियण ऊर्जा की आवश्यकता होती है। इसलिए उत्तर (4) है।

5. Gold numbers of some colloids are : Gelatin : 0.005 - 0.01, Gum Arabic : 0.15 - 0.25 ; Oleate : 0.04 - 1.0; Starch : 15 - 25. Which among these is a better protective colloid ?

[JEE(Main) 2016 Online (10-04-16), 4/120]

(1*) Gelatin	(2) Starch	(3) Gum Arabic	(4) Oleate
--------------	------------	----------------	------------

कुछ गोल्ड कोलॉइडों की गोल्ड संख्या है : जिलेटिन : 0.005 - 0.01, गम एरेबिक : 0.15 - 0.25 ; ऑलिएट : 0.04 - 1.0; स्टॉर्च :

15 - 25 इनमें से कौन रक्षी कोलॉइड है?

- (1*) जिलेटिन
- (2) स्टॉर्च

[JEE(Main) 2016 Online (10-04-16), 4/120]

- (3) गम एरेबिक
- (4) ऑलिएट

Sol. Lower the gold number, more will be protective power of colloid.
गोल्ड संख्या न्यून होने पर, कोलॉइड की रक्षण शक्ति अधिक होगी।

6. Among the following, **correct** statement is : [JEE(Main) 2017 Online (08-04-17), 4/120]

- (1) One would expect charcoal to adsorb chlorine more than hydrogen sulphide
- (2) Sols metal sulphides are lyophilic
- (3) Hardy Schulze law states that bigger the size of the ions, the greater is its coagulating power.
- (4*) Brownian movement is more pronounced for smaller particles than for bigger-particles.

निम्न में से सत्य कथन है –

[JEE(Main) 2017 Online (08-04-17), 4/120]

- (1) चारकॉल हाइड्रॉजन सल्फाइड की तुलना में क्लोरीन को अधिक अधिशेषित करता है।
- (2) सॉल धातु सल्फाइड द्रवस्नेही होते हैं।
- (3) हार्डीशुल्जे नियम के अनुसार आयनों का आकार बड़ा होने पर स्कन्दन क्षमता भी बढ़ती है।
- (4*) ब्राउनी गति छोटे कणों के लिए बड़े कणों की अपेक्षा अधिक प्रभावी होती है।

Sol. Brownian movement more pronounced for smaller particles.

छोटे कणों के लिए ब्राउनियन गति अधिक सार्थक होती है।

7. Adsorption of a gas on a surface follows Freundlich adsorption isotherm. Plot of $\log \frac{X}{m}$ versus $\log p$ gives a straight line with slope equal to 0.5, then : [JEE(Main) 2017 Online (09-04-17), 4/120]

$(\frac{X}{m}$ is the mass of the gas adsorbed per gram of adsorbent)

- (1) Adsorption is proportional to the pressure.
- (2*) Adsorption is proportional to the square root of pressure.
- (3) Adsorption is proportional to the square of pressure.
- (4) Adsorption is independent of pressure.

किसी सतह पर गैस का अधिशेषण फ्रेंडलिच अधिशेषण समतापी के अनुसार होता है। $\log \frac{X}{m}$ तथा $\log p$ के मध्य खींचा

गया ग्राफ एक सरल रेखा है जिसकी ढाल 0.5 है तब : [JEE(Main) 2017 Online (09-04-17), 4/120]

(एक ग्राम अधिशेषक की सतह पर अधिशेष्य होने वाली गैस का द्रव्यमान $= \frac{X}{m}$)

- (1) अधिशेषण दाब के समानुपाती होता है।
- (2*) अधिशेषण दाब के वर्गमूल के समानुपाती होता है।
- (3) अधिशेषण दाब के वर्ग के समानुपाती होता है।
- (4) अधिशेषण दाब पर निर्भर नहीं करता है।

Sol.
$$\frac{X}{m} = KP^{\frac{1}{n}}$$

$$\therefore \log \left(\frac{X}{m} \right) = \log K + \frac{1}{n} \log P$$

$$\text{slop ढाल} = \frac{1}{n} = 0.5 \therefore n = 2$$

so, adsorption is proportional to square root of pressure.

इस प्रकार अधिशेषण दाब के वर्गमूल के समानुपाती होता है।

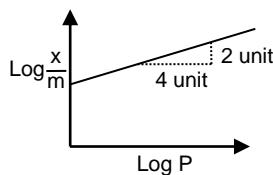
8. Which of the following statements about colloids is **False** ? [JEE(Main) 2018 Online (15-04-18), 4/120]

- (1) When silver nitrate solution is added to potassium iodide solution a negatively charged colloidal solution is formed.

(2*) Freezing point of colloidal solution is lower than true solution at same concentration of a solute.

- (3) Colloidal particles can pass through ordinary filter paper.

(4) When excess of electrolyte is added to colloidal solution, colloidal particle will be precipitated.


कोलाइड के सम्बन्ध में निम्न में से कौन सा कथन **असत्य** है? [JEE(Main) 2018 Online (15-04-18), 4/120]

- (1) जब सिल्वर नाइट्रोट विलयन, पोटैशियम आयोडाइड विलयन में मिलाया जाता है तो एक ऋणावेशित कोलाइडी विलयन बनता है।

(2*) विलय की एक ही सान्द्रता पर वास्तविक विलयन की तुलना में कोलाइड विलयन का हिमांक निम्न होता है।

- (3) कोलाइडी कण एक साधारण फिल्टर पेपर से होकर निकल जाते हैं।

(1) p^2 (2) p (3*) $p^{1/2}$ (4) $p^{1/4}$
 (1) p^2 के (2) p के (3*) $p^{1/2}$ के (4) $p^{1/4}$ के

Sol. $\frac{x}{m} = K(P)^{1/n}$

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log P$$

$$\Rightarrow \text{Slope} = \frac{1}{n} \quad \Rightarrow \text{ढाल } \frac{1}{n}$$

$$\text{From graph, slope आरेख से ढाल} = \frac{2}{4} = \frac{1}{2}$$

$$\Rightarrow n = 2 \quad \Rightarrow \frac{x}{m} \propto (P)^{1/2}$$

13. For coagulation of arsenious sulphide sol, which one of the following salt solution will be most effective?

[JEE(Main) 2019 Online (09-01-19), 4/120]

आर्सेनियस सल्फाइट का स्कंदन निम्न में से किस लवण के घोल से सबसे अधिक प्रभावकारी होगा?

[JEE(Main) 2019 Online (09-01-19), 4/120]

(1) Na_3PO_4 (2*) AlCl_3 (3) BaCl_2 (4) NaCl

Sol. As_2S_3 sol is a negatively charged sol. So AlCl_3 is the most effective coagulating agent.

As_2S_3 सॉल ऋणावेशित सॉल है इसलिए AlCl_3 सर्वाधिक प्रभावी स्कन्दनकारी है।

14. Which of the following is not an example of heterogeneous catalytic reaction?

[JEE(Main) 2019 Online (10-01-19), 4/120]

(1) Ostwald's process (2) Haber's process
 (3*) Combustion of coal (4) Hydrogenation of vegetable oils

निम्न में से कौन विषमांगी उत्प्रेरकीय अभिक्रिया का उदाहरण नहीं है?

[JEE(Main) 2019 Online (10-01-19), 4/120]

(1) ओस्टवाल्ड प्रक्रम (2) हैबर प्रक्रम
 (3*) कोयले का दहन (4) वनस्पति तेलों का हाइड्रोजनीकरण

Sol.

(1) Ostwald process (2) Pt
 (2) Haber process Oxide of Fe, K, Al
 (3) Combustion of coal no heterogeneous catalytic
 (4) Hydrogenation Ni

Catalyst

Sol.

(1) ओस्टवाल्ड प्रक्रम Pt
 (2) हैबर प्रक्रम Fe, K, Al के ऑक्साइड
 (3) कोयले का दहन विषमांगी उत्प्रेरण नहीं
 (4) हाइड्रोजनीकरण Ni

15. Haemoglobin and gold sol are examples of:

[JEE(Main) 2019 Online (10-01-19), 4/120]

(1) negatively charged sols
 (2) positively charged sols
 (3*) positively and negatively charged sols, respectively
 (4) negatively and positively charged sols, respectively

हीमोग्लोबिन तथा गोल्ड सॉल उदाहरण हैं:

[JEE(Main) 2019 Online (10-01-19), 4/120]

(1) ऋणात्मक आवेशित सॉलों के (2) धनात्मक आवेशित सॉलों के
 (3*) क्रमशः धनात्मक तथा ऋणात्मक आवेशित सॉलों के (4) क्रमशः ऋणात्मक तथा धनात्मक आवेशित सॉलों के

Sol. Fact तथ्य

16. An example of solid sol is:
 (1) Butter (2) Hair cream
 ठोस सॉल किसका एक उदाहरण है –
 (1) मक्खन (2) हेयर क्रीम

[JEE(Main) 2019 Online (11-01-19), 4/120]
 (3) Paint (4*) Gem stones
 [JEE(Main) 2019 Online (11-01-19), 4/120]
 (3) पेन्ट (4*) जेम स्टोन

Sol. Factual तथ्यात्मक।

17. Among the colloids cheese (C), milk (M) and smoke (S), the correct combination of the dispersed phase and dispersion medium, respectively is : [JEE(Main) 2019 Online (11-01-19), 4/120]

(1*) C : liquid in solid; M : liquid in liquid; S : solid in gas
 (2) C : solid in liquid; M : liquid in liquid; S : gas in solid
 (3) C : solid in liquid; M : solid in liquid; S : solid in gas
 (4) C : liquid in solid; M : liquid in solid; S : solid in gas

कोलाइडों, जैसे पनीर (C), दूध (M) तथा धूआँ (S) के विषय में परिक्षित प्रावस्था तथा परिक्षेपण माध्यम का सही मेल क्रमशः होगा :

(1*) C : ठोस में द्रव ; M : द्रव में द्रव; S : गैस में ठोस (2) C : द्रव में ठोस ; M : द्रव में द्रव ; S : ठोस में गैस
 (3) C : द्रव में ठोस ; M : द्रव में ठोस; S : गैस में ठोस (4) C : ठोस में द्रव ; M : ठोस में द्रव ; S : गैस में ठोस

Sol. Cheese \rightarrow liquid in solidMilk \rightarrow liquid in liquidSmoke \rightarrow Solid in gas**Sol.** पनीर \rightarrow ठोस में द्रवदूध \rightarrow द्रव में द्रवधूआँ \rightarrow गैस में ठोस

18. Given

Gas	H ₂	CH ₄	CO ₂	SO ₂
Critical	33	190	304	630

Temperature / K

On the basis of data given above, predict which of the following gases shows least adsorption on a definite amount of charcoal ? [JEE(Main) 2019 Online (12-01-19), 4/120]

दिया गया है:

गैस	H ₂	CH ₄	CO ₂	SO ₂
क्रांतिक ताप / K	33	190	304	630

ऊपर दिये गये आँकड़ों के आधार पर प्रागुक्ति कीजिए कि निम्न में से कौनसी गैस चारकोल की एक निश्चित मात्रा पर न्यूनत अधिशोषण प्रदर्शित करेगी ? [JEE(Main) 2019 Online (12-01-19), 4/120]

(1) CH₄ (2*) H₂ (3) CO₂ (4) SO₂

Sol. Amount of gas adsorbed गैस की अधिशोषित मात्रा $\propto T_C$

19. Among the following, the false statement is :

[JEE(Main) 2019 Online (12-01-19), 4/120]

(1) It is possible to cause artificial rain by throwing electrified sand carrying charge opposite to the one on clouds from an aeroplane.

(2) Lyophilic solution can be coagulated by adding an electrolyte

(3*) Latex is a colloidal solution of rubber particles which are positively charged

(4) Tyndall effect can be used to distinguish between a colloidal solution and a true solution

निम्नलिखित में से, असत्य कथन है : [JEE(Main) 2019 Online (12-01-19), 4/120]

(1) वायुयान की सहायता से बादलों पर उपस्थित आवेश से विपरीत आवेशित रेत के कणों को फेंक कर कृत्रिम वर्षा करवाना सम्भव है।

(2) द्रवरागी, सॉल का स्कन्दन एक विद्युत अपघटय मिलाकर किया जा सकता है।

(3*) लेटेक्स, रबर के कणों का एक कोलॉइडी विलयन है, जो धनावेशित होते हैं।

(4) टिन्डल प्रभाव का उपयोग एक कोलॉइडी विलयन तथा वास्तविक विलयन में अन्तर करने के लिए किया जा सकता है।

Sol. Theory based सैद्धान्तिक